Should social science be more solution-oriented?

Abstract

Over the past 100 years, social science has generated a tremendous number of theories on the topics of individual and collective human behaviour. However, it has been much less successful at reconciling the innumerable inconsistencies and contradictions among these competing explanations, a situation that has not been resolved by recent advances in ‘computational social science’. In this Perspective, I argue that this ‘incoherency problem’ has been perpetuated by an historical emphasis in social science on the advancement of theories over the solution of practical problems. I argue that one way for social science to make progress is to adopt a more solution-oriented approach, starting first with a practical problem and then asking what theories (and methods) must be brought to bear to solve it. Finally, I conclude with a few suggestions regarding the sort of problems on which progress might be made and how we might organize ourselves to solve them.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Vickrey, W. Counterspeculation, auctions, and competitive sealed tenders. J. Financ. 16, 8–37 (1961).

    Article  Google Scholar 

  2. 2

    Myerson, R. B. Optimal auction design. Math. Oper. Res. 6, 58–73 (1981).

    Article  Google Scholar 

  3. 3

    Gale, D. & Shapley, L. S. College admissions and the stability of marriage. Am. Math. Mon. 69, 9–15 (1962).

    Article  Google Scholar 

  4. 4

    Roth, A. E. & Sotomayor, M. in Handbook of Game Theory with Economic Applications Vol. 2 (eds Aumann, R. & Hart, S. ) 485–541 (Elsevier, 1992).

    Google Scholar 

  5. 5

    Merton, R. K. Social Theory and Social Structure 39–72 (The Free Press, 1968).

    Google Scholar 

  6. 6

    Hidalgo, C. A. Disconnected, fragmented, or united? A trans-disciplinary review of network science. Appl. Network Sci.http://dx.doi.org/10.1007/s41109-016-0010-3 (2016).

  7. 7

    Becker, H. S. Tricks of the Trade: How to Think about Your Research While You're Doing it (Univ. Chicago Press, 1998).

    Google Scholar 

  8. 8

    Watts, D. J. Everything Is Obvious: *Once You Know the Answer (Crown Business, 2011).

    Google Scholar 

  9. 9

    Frank, R. H. Success and Luck: Good Fortune and the Myth of Meritocracy (Princeton Univ. Press, 2016).

    Google Scholar 

  10. 10

    Klinenberg, E. Heat Wave: A Social Autopsy of Disaster in Chicago (Univ. Chicago Press, 2015).

    Google Scholar 

  11. 11

    Venkatesh, S. A. American Project: The Rise and Fall of a Modern Ghetto (Harvard Univ. Press, 2002).

    Google Scholar 

  12. 12

    Goffman, A. On the Run: Fugitive Life in an American City (Picador, 2015).

    Google Scholar 

  13. 13

    Kahneman, D. Thinking, Fast and Slow (Macmillan, 2011).

    Google Scholar 

  14. 14

    Thaler, R. H. & Sunstein, C. R. Nudge: Improving Decisions About Health, Wealth, and Happiness (Yale Univ. Press, 2008).

    Google Scholar 

  15. 15

    Gelman, A. Red State, Blue State, Rich State, Poor State: Why Americans Vote the Way They Do (Princeton Univ. Press, 2008).

    Google Scholar 

  16. 16

    Milanovic, B. The Haves and the Have-Nots: A Brief and Idiosyncratic History of Global Inequality (Basic Books, 2010).

    Google Scholar 

  17. 17

    Ravitch, D. The Death and Life of the Great American School System (Basic Books, 2010).

    Google Scholar 

  18. 18

    Gruber, J. Covering the uninsured in the United States. J. Econ. Lit. 46, 571–606 (2008).

    Article  Google Scholar 

  19. 19

    Banerjee, A. & Duflo, E. Poor Economics: A Radical Rethinking of the Way to Fight Global Poverty (Public Affairs, 2011).

    Google Scholar 

  20. 20

    Sunstein, C. R. Simpler: The Future of Government (Simon & Schuster, 2014).

    Google Scholar 

  21. 21

    Granovetter, M. S. Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978)

    Article  Google Scholar 

  22. 22

    Bikhchandani, S., Hirshleifer, D. & Welch, I. A theory of fads, fashion, custom, and cultural change as informational cascades. J. Polit. Econ. 100, 992–1026 (1992).

    Article  Google Scholar 

  23. 23

    Watts, D. J. & Dodds, P. S. in The Oxford Handbook of Analytical Sociology (eds Hedström, P. & Bearman, P. S. ) 475–497 (Oxford Univ. Press, 2009).

    Google Scholar 

  24. 24

    Bass, F. M. A new product growth for model consumer durables. Manage. Sci. 15, 215–227 (1969).

    Article  Google Scholar 

  25. 25

    Kermack, W. O. & McKendrick, A. G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1927).

    Article  Google Scholar 

  26. 26

    Goldenberg, J., Libai, B. & Muller, E. Talk of the network: a complex systems look at the underlying process of word-of-mouth. Market. Lett. 12, 211–223 (2001).

    Article  Google Scholar 

  27. 27

    Strang, D. & Tuma, N. B. Spatial and temporal heterogeneity in diffusion. Am. J. Sociol. 99, 614–639 (1993).

    Article  Google Scholar 

  28. 28

    Bicchieri, C. & Fukui, Y. The great illusion: ignorance, informational cascades and the persistence of unpopular norms. Bus. Ethics Quart. 9, 127–155 (1999).

    Article  Google Scholar 

  29. 29

    Watts, D. J. A twenty-first century science. Nature 445, 489 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Lazer, D. et al. Computational social science. Science 323, 721–723 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Mason, W. & Suri, S. Conducting behavioral research on Amazon's Mechanical Turk. Behav. Res. Meth. 44, 1–23 (2012).

    Article  Google Scholar 

  32. 32

    Horton, J. J., Rand, D. G. & Zeckhauser, R. J. The online laboratory: conducting experiments in a real labor market. Exp. Econ. 14, 399–425 (2011).

    Article  Google Scholar 

  33. 33

    Paolacci, G., Chandler, J. & Ipeirotis, P. G. Running experiments on Amazon Mechanical Turk. Judgm. Decis. Mak. 5, 411–419 (2010).

    Google Scholar 

  34. 34

    Aral, S. & Walker, D. Identifying influential and susceptible members of social networks. Science 337, 337–341 (2012).

    CAS  Article  Google Scholar 

  35. 35

    Bakshy, E., Eckles, D., Yan, R. & Rosenn, I. Social influence in social advertising: evidence from field experiments. In Proc. 13th ACM Conf. Electronic Commerce 146–161 (ACM, 2012).

    Google Scholar 

  36. 36

    Davis, G. F. What is organizational research for? Admin. Sci. Quart. 60, 179–188 (2015).

    Article  Google Scholar 

  37. 37

    Wallerstein, I. Open the Social Sciences: Report of the Gulbenkian Commission on the Restructuring of the Social Sciences (Stanford Univ. Press, 1996).

    Google Scholar 

  38. 38

    Tetlock, P. E. Expert Political Judgment: How Good Is It? How Can We Know? (Princeton Univ. Press, 2005).

    Google Scholar 

  39. 39

    Gladwell, M. The tipping point. The New Yorker (3 June 1996).

  40. 40

    Sampson, R. J. & Raudenbush, S. W. Systematic social observation of public spaces: a new look at disorder in urban neighborhoods. Am. J. Sociol. 105, 603–651 (1999).

    Article  Google Scholar 

  41. 41

    Harcourt, B. E. & Ludwig, J. Broken windows: new evidence from New York city and a five-city social experiment. Univ. Chicago Law Rev. 73, 271–320 (2006).

    Google Scholar 

  42. 42

    Meehl, P. E. Why summaries of research on psychological theories are often uninterpretable. Psychol. Rep. 66, 195–244 (1990).

    Article  Google Scholar 

  43. 43

    Collaboration, O. S. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).

  44. 44

    Gelman, A. & Loken, E. The statistical crisis in science. Am. Sci. 102, 460 (2014).

  45. 45

    Bush, V. Science: the endless frontier. Trans. Kansas Acad. Sci. 48, 231–264 (1945).

    Article  Google Scholar 

  46. 46

    Stokes, D. E. Pasteur's Quadrant: Basic Science and Technological Innovation (Brookings Institution Press, 2011).

    Google Scholar 

  47. 47

    Sarewitz, D. Saving science. The New Atlantis 49, 4–40 (2016).

    Google Scholar 

  48. 48

    Shneiderman, B. The New ABCs of Research (Oxford Univ. Press, 2016).

    Google Scholar 

  49. 49

    Katz, E. & Lazarsfeld, P. F. Personal Influence: The Part Played by People in the Flow of Mass Communications (The Free Press, 1955).

    Google Scholar 

  50. 50

    Hallinan, M. T. Equality of educational opportunity. Annu. Rev. Sociol. 249–268 (1988).

    Article  Google Scholar 

  51. 51

    Liberman, M. Fred Jelinek. Comput. Linguist. 36, 595–599 (2010).

    Article  Google Scholar 

  52. 52

    Donoho, D. 50 Years of Data Science (Tukey Centennial Workshop, 2015); http://courses.csail.mit.edu/18.337/201/docs/50YearsDataScience.pdf

    Google Scholar 

  53. 53

    Prewitt, K. Can social science matter? Itemshttp://items.ssrc.org/can-social-science-matter/ (2016).

  54. 54

    Judson, H. F. The Eighth Day of Creation (Simon & Schuster, 1979).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Duncan J. Watts.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Watts, D. Should social science be more solution-oriented?. Nat Hum Behav 1, 0015 (2017). https://doi.org/10.1038/s41562-016-0015

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing