Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Record of pre-industrial atmospheric sulfate in continental interiors

Abstract

Sulfate aerosols affect climate by scattering radiation and by changing the microphysical properties of water clouds. In much of the continental interiors that are overwhelmed by anthropogenic sulfate today, the nature of pre-industrial atmospheric sulfate remains pure speculation, which hampers our ability to quantify anthropogenic perturbation on climate and uncertainties in global climate models. Here we show that sequential leaching and multiple-isotope measurement enabled us to effectively distinguish sulfate of different origins, including pre-industrial atmospheric sulfate, retained in certain outcropping carbonates. Data from two interior sites in northern China show that one of the sulfate endmembers consistently has an unusually positive 17O anomaly (Δʹ17O at ~+1.8‰) and characteristic δ18O (~1–5‰) and δ34S (~5–10‰) values. We interpret this sulfate endmember to be integrated pre-industrial atmospheric sulfate from at least the last a few thousands of years. A triple oxygen isotope enabled GEOS-Chem chemical transport model revealed a higher Δʹ17O value in northern China and the south-western United States in the past, consistent with our data. Overall, pre-industrial atmospheric sulfate aerosol chemistry in the interior of northern China and south-western United States had a higher pH in cloud water, which may have led to a less cloud cover due to cleaner air and coarser aerosol sizes than today.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cross plots of Δʹ17O-δ34S, Δʹ17O-δ18O and δ18O-δ34S.
Fig. 2: Difference of Δʹ17O values of tropospheric sulfate and the conversion efficiency from SO2 to sulfate between 1986 and 1750.

Similar content being viewed by others

Code availability

The GEOS-Chem model used in this study is available at https://doi.org/10.5281/zenodo.3403111. The code used to run the model and to analyse the results is not publicly available, but can be provided upon request by contacting S.H. (hattori@nju.edu.cn).

References

  1. Seinfeld, J. H. et al. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system. Proc. Natl Acad. Sci. USA 113, 5781–5790 (2016).

    Article  Google Scholar 

  2. Menon, S. Current uncertainties in assessing aerosol effects on climate. Annu. Rev. Environ. Resour. 29, 1–30 (2004).

    Article  Google Scholar 

  3. Matsui, H. Black carbon absorption efficiency under preindustrial and present-day conditions simulated by a size- and mixing-state-resolved global aerosol model. J. Geophys. Res. Atmos. 125, e2019JD032316 (2020).

    Article  Google Scholar 

  4. Hamilton, D. S. et al. Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. Nat. Commun. 9, 3182 (2018).

    Article  Google Scholar 

  5. Carslaw, K. S. et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503, 67–71 (2013).

    Article  Google Scholar 

  6. Carslaw, K. S. et al. Aerosols in the pre-industrial atmosphere. Curr. Clim. Change Rep. 3, 1–15 (2017).

    Article  Google Scholar 

  7. Rodhe, H. Human impact on the atmospheric sulfur balance. Tellus B. 51, 110–122 (1999).

    Article  Google Scholar 

  8. Alexander, B., Savarino, J., Kreutz, K. J. & Thiemens, M. H. Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen. J. Geophys. Res. Atmos. 109, D08303/08301–D08303/08308 (2004).

    Article  Google Scholar 

  9. Lelieveld, J., Peters, W., Dentener, F. J. & Krol, M. C. Stability of tropospheric hydroxyl chemistry. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002JD002272 (2002).

  10. Andreae, M. O. Aerosols before pollution. Science 315, 50–51 (2007).

    Article  Google Scholar 

  11. Korhonen, H., Carslaw, K. S., Spracklen, D. V., Mann, G. W. & Woodhouse, M. T. Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: a global model study. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007JD009718 (2008).

  12. Hamilton, D. S. et al. Occurrence of pristine aerosol environments on a polluted planet. Proc. Natl Acad. Sci. USA 111, 18466–18471 (2014).

    Article  Google Scholar 

  13. Kunasek, S. A. et al. Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core. J. Geophys. Res. Atmos. https://doi.org/10.1029/2010jd013846 (2010).

  14. Walters, W. W. et al. Assessing the seasonal dynamics of nitrate and sulfate aerosols at the south pole utilizing stable isotopes. J. Geophys. Res. Atmos. 124, 8161–8177 (2019).

    Article  Google Scholar 

  15. Iizuka, Y. et al. A 60 year record of atmospheric aerosol depositions preserved in a high-accumulation dome ice core, Southeast Greenland. J. Geophys. Res. Atmos. 123, 574–589 (2018).

    Article  Google Scholar 

  16. Hill-Falkenthal, J., Priyadarshi, A., Savarino, J. & Thiemens, M. Seasonal variations in 35S and D17O of sulfate aerosols on the Antarctic Plateau. J. Geophys. Res. Atmos. 118, 9444–9455 (2013).

    Article  Google Scholar 

  17. Wynn, P. M., Loader, N. J. & Fairchild, I. J. Interrogating trees for isotopic archives of atmospheric sulphur deposition and comparison to speleothem records. Environ. Pollut. 187, 98–105 (2014).

    Article  Google Scholar 

  18. Peng, Y. et al. Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: evidence from triple oxygen isotopes. Geology 42, 815–818 (2014).

    Article  Google Scholar 

  19. Bao, H. Sulfate: a time capsule for Earth’s O2, O3, and H2O. Chem. Geol. 395, 108–118 (2015).

    Article  Google Scholar 

  20. Crockford, P. W. et al. Claypool continued: extending the isotopic record of sedimentary sulfate. Chem. Geol. 513, 200–225 (2019).

    Article  Google Scholar 

  21. Pingitore, N. E., Meitzner, G. & Love, K. M. Identification of sulfate in natural carbonates by x-ray absorption spectroscopy. Geochim. Cosmochim. Acta 59, 2477–2483 (1995).

    Article  Google Scholar 

  22. Zuo, P. et al. Reviews of the Mesoproterozoic to Neoproterozoic sedimentary sequences and new constraints on the tectono-sedimentary evolution of the southern margin of the North China Craton. J. Asian Earth Sci. 179, 416–429 (2019).

    Article  Google Scholar 

  23. Ma, H. et al. Sulfur and oxygen isotopic compositions of carbonate associated sulfate (CAS) of Cambrian ribbon rocks: implications for the constraints on using CAS to reconstruct seawater sulfate sulfur isotopic compositions. Chem. Geol. 580, 120369 (2021).

    Article  Google Scholar 

  24. Wang, K. et al. Isotopic constraints on atmospheric sulfate formation pathways in the Mt. Everest region, southern Tibetan Plateau. Atmos. Chem. Phys. 21, 8357–8376 (2021).

    Article  Google Scholar 

  25. Smith, S. J. et al. Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys. 11, 1101–1116 (2011).

    Article  Google Scholar 

  26. Mayewski, P. A. et al. Sulfate and nitrate concentrations from a South Greenland ice core. Science 232, 975–977 (1986).

    Article  Google Scholar 

  27. Kreidenweis, S. M. et al. Modification of aerosol mass and size distribution due to aqueous-phase SO2 oxidation in clouds: comparisons of several models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002JD002697 (2003)

  28. Krankowsky, D., Bartecki, F., Klees, G. G., Mauersberger, K. & Schellenbach, K. Measurement of heavy isotope enrichment in tropospheric ozone. Geophys. Res. Lett. 22, 1713–1716 (1995).

    Article  Google Scholar 

  29. Sofen, E. D., Alexander, B. & Kunasek, S. A. The impact of anthropogenic emissions on atmospheric sulfate production pathways, oxidants, and ice core D17O(SO42−). Atmos. Chem. Phys. 11, 3565–3578 (2011).

    Article  Google Scholar 

  30. Hattori, S. et al. Isotopic evidence for acidity-driven enhancement of sulfate formation after SO2 emission control. Sci. Adv. 7, eabd4610 (2021).

    Article  Google Scholar 

  31. Calhoun, J. A., Bates, T. S. & Charlson, R. J. Sulfur isotope measurements of submicrometer sulfate aerosol particles over the Pacific Ocean. Geophys. Res. Lett. 18, 1877–1880 (1991).

    Article  Google Scholar 

  32. Amrani, A., Said-Ahmad, W., Shaked, Y. & Kiene, R. P. Sulfur isotope homogeneity of oceanic DMSP and DMS. Proc. Natl Acad. Sci. USA 110, 18413–18418 (2013).

    Article  Google Scholar 

  33. Patris, N. et al. First sulfur isotope measurements in central Greenland ice cores along the preindustrial and industrial periods. J. Geophys. Res. Atmos. 107, 4115 (2002).

    Article  Google Scholar 

  34. Rozanski, K., Araguas-Araguas, L. & Gonfiantini, R. in Climate Change in Continental Isotopic Records Vol. 78 (eds Swart, P. K. et al.) 1–36 (American Geophysical Union Geophysical Monograph, 1993).

  35. Herman, R. L. et al. Aircraft validation of Aura Tropospheric Emission Spectrometer retrievals of HDO/H2O. Atmos. Meas. Tech. 7, 3127–3138 (2014).

    Article  Google Scholar 

  36. Dyroff, C. et al. Airborne in situ vertical profiling of HDO/H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign. Atmos. Meas. Tech. 8, 2037–2049 (2015).

    Article  Google Scholar 

  37. Spracklen, D. V. & Rap, A. Natural aerosol–climate feedbacks suppressed by anthropogenic aerosol. Geophys. Res. Lett. 40, 5316–5319 (2013).

    Article  Google Scholar 

  38. Rap, A. et al. Natural aerosol direct and indirect radiative effects. Geophys. Res. Lett. 40, 3297–3301 (2013).

    Article  Google Scholar 

  39. Turnock, S. T. et al. The impact of changes in cloud water pH on aerosol radiative forcing. Geophys. Res. Lett. 46, 4039–4048 (2019).

    Article  Google Scholar 

  40. Li, X. Q., Bao, H., Gan, Y. Q., Zhou, A. G. & Liu, Y. D. Multiple oxygen and sulfur isotope compositions of secondary atmospheric sulfate in a mega-city in central China. Atmos. Environ. 81, 591–599 (2013).

    Article  Google Scholar 

  41. Jenkins, K. A. & Bao, H. Multiple oxygen and sulfur isotope compositions of atmospheric sulfate in Baton Rouge, LA, USA. Atmos. Environ. 40, 4528–4537 (2006).

    Article  Google Scholar 

  42. Jedrysek, M. O. Oxygen and sulphur isotope dynamics in the SO42− of an urban precipitation. Water Air Soil Pollut. 117, 15–25 (2000).

    Article  Google Scholar 

  43. Jamieson, R. E. & Wadleigh, M. A. Tracing sources of precipitation sulfate in eastern Canada using stable isotopes and trace metals. J. Geophys. Res. Atmos. 105, 20549–20556 (2000).

    Article  Google Scholar 

  44. Wadleigh, M. A., Schwarcz, H. P. & Kramer, J. R. Isotopic evidence for the origin of sulfate in coastal rain. Tellus B 48B, 44–59 (1996).

    Article  Google Scholar 

  45. McCabe, J. R., Savarino, J., Alexander, B., Gong, S. L. & Thiemens, M. H. Isotopic constraints on non-photochemical sulfate production in the Arctic winter. Geophys. Res. Lett. https://doi.org/10.1029/2005gl025164 (2006).

  46. Bao, H. & Marchant, D. R. Quantifying sulfate components and their variations in soils of the McMurdo Dry Valleys, Antarctica. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005JD006669 (2006).

  47. Genot, I. et al. Oxygen and sulfur mass-independent isotopic signatures in black crusts: the complementary negative Δ33S reservoir of sulfate aerosols? Atmos. Chem. Phys. 20, 4255–4273 (2020).

    Article  Google Scholar 

  48. Bao, H. M. Purifying barite for oxygen isotope measurement by dissolution and reprecipitation in a chelating solution. Anal. Chem. 78, 304–309 (2006).

    Article  Google Scholar 

  49. Bey, I. et al. Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J. Geophys. Res. Atmos. 106, 23073–23095 (2001).

    Article  Google Scholar 

  50. Alexander, B. et al. Isotopic constraints on the formation pathways of sulfate aerosol in the marine boundary layer of the subtropical northeast Atlantic Ocean. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD016773 (2012).

  51. Chen, Q. et al. Sulfate production by reactive bromine: implications for the global sulfur and reactive bromine budgets. Geophys. Res. Lett. 44, 7069–7078 (2017).

    Article  Google Scholar 

  52. Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

    Article  Google Scholar 

  53. van Marle, M. J. E. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).

    Article  Google Scholar 

  54. Meinshausen, M. et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev. 10, 2057–2116 (2017).

    Article  Google Scholar 

  55. Ishino, S. et al. Regional characteristics of atmospheric sulfate formation in east antarctica imprinted on 17O-excess signature. J. Geophys. Res. Atmos. 126, e2020JD033583 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support is provided by the National Key Research and Development Program of China (2022YFF0800303), the National Natural Science Foundation of China (42173001, 41490635 and 41672334), Nanjing University Start-up fund (to H.B.), MEXT/JSPS KAKENHI (JP16H0584 and JP20H04305), Fundamental Research Funds for the Central Universities (0206/14380150, 0206/14380185 and 0206/14380174), Natural Science Foundation of Henan (202300410178) and Key Scientific Research Project in Colleges and Universities of Henan (18A170001). We thank S. Zhai and S. Ishino for providing support for handling the GEOS-Chem model.

Author information

Authors and Affiliations

Authors

Contributions

H.B., Y.P. and S.H. conceived the research idea; Y.P., P.Z. and H.M. did the analytical treatments; S.H. contributed to the model simulations; and H.B. wrote the paper with writing contributions from all co-authors.

Corresponding author

Correspondence to Huiming Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Theodore Present and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor(s): James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Sample names and sulfur and triple oxygen isotope composition of sulfate leached from carbonate outcrops of three sites

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Hattori, S., Zuo, P. et al. Record of pre-industrial atmospheric sulfate in continental interiors. Nat. Geosci. 16, 619–624 (2023). https://doi.org/10.1038/s41561-023-01211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01211-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing