Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High rates of organic carbon burial in submarine deltas maintained on geological timescales

Abstract

Burial of terrestrial organic carbon in marine sediments can draw down atmospheric CO2 levels on Earth over geologic timescales (≥105 yr). The largest sinks of organic carbon burial in present-day oceans lie in deltas, which are composed of three-dimensional sigmoidal sedimentary packages called clinothems, dipping from land to sea. Analysis of modern delta clinothems, however, provides only a snapshot of the temporal and spatial characteristics of these complex systems, making long-term organic carbon burial efficiency difficult to constrain. Here we determine the stratigraphy of an exhumed delta clinothem preserved in Upper Cretaceous (~75 million years ago) deposits in the Magallanes Basin, Chile, using field measurements and aerial photos, which was then combined with measurement of total organic carbon to create a comprehensive organic carbon budget. We show that the clinothem buried 93 ± 19 Mt terrestrial-rich organic carbon over a duration of 0.1–0.9 Myr. When normalized to the clinothem surface area, this represents an annual burial of 2.3–15.7 t km−2 yr−1 organic carbon, which is on the same order of magnitude as modern-day burial rates in clinothems such as the Amazon delta. This study demonstrates that deltas have been and will probably be substantial terrestrial organic carbon sinks over geologic timescales, a long-standing idea that had yet to be quantified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographic and geologic context for this study.
Fig. 2: OC content and composition in the studied delta clinothem.
Fig. 3: Stratigraphic section and bulk organic geochemistry.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the data source associated with the paper. Data and metadata associated with organic carbon measurements made on the marine sediment samples can also be found at PANGAEA Repository DOI (waiting for a DOI, data submitted on 16/08/22). Source data are provided with this paper.

References

  1. Ludwig, W., Probst, J. L. & Kempe, S. Predicting the oceanic input of organic carbon by continental erosion. Glob. Biogeochem. Cycles 10, 23–41 (1996).

    Article  Google Scholar 

  2. Schlünz, B. & Schneider, R. R. Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux and burial rates. Int. J. Earth Sci. 88, 599–606 (2000).

    Article  Google Scholar 

  3. Burdige, D. J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).

    Article  Google Scholar 

  4. Gaillardet, J., Dupre, B. & Allegre, C. J. Geochemistry of large river-suspended sediments: silicate weathering recycling tracer. Geochim. Cosmochim. Acta 63, 4037–4051 (2009).

    Article  Google Scholar 

  5. Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).

    Article  Google Scholar 

  6. Blair, N. E. & Aller, R. C. The fate of terrestrial organic carbon in the marine environment. Ann. Rev. Mar. Sci. 4, 401–423 (2012).

    Article  Google Scholar 

  7. Hilton, R. G. & West, J. A. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1, 284–299 (2020).

    Article  Google Scholar 

  8. Berner, R. A. Burial of organic carbon and pyrite in the modern ocean—its geochemical and environmental significance. Am. J. Sci. 282, 451–473 (1982).

    Article  Google Scholar 

  9. Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995).

    Article  Google Scholar 

  10. Shields, M. R. et al. Carbon storage in the Mississippi River delta enhanced by environmental engineering. Nat. Geosci. 10, 846–851 (2017).

    Article  Google Scholar 

  11. Richey, J. E., Brocl, J. T., Naiman, R. J., Wissmar, R. C. & Stallard, R. F. Organic carbon: oxidation and transport in the Amazon River. Science 207, 1348–1351 (1980).

    Article  Google Scholar 

  12. Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2007).

    Article  Google Scholar 

  13. Rich, J. L. Three critical environments of deposition and criteria for recognition of rocks deposited in each of them. GSA Bull. 62, 1–20 (1951).

    Article  Google Scholar 

  14. Patruno, S., Hampson, G. J. & Jackson, C. A. Quantitative characterisation of deltaic and subaqueous clinoforms. Earth Sci. Rev. 142, 79–119 (2015).

    Article  Google Scholar 

  15. Steel, R. J. & Olsen, T. in Sequence Stratigraphic Models for Exploration and Production: Evolving Methodology, Emerging Models and Application Histories (eds Armentrout, J. M. & Rosen, N. C.) 367–381 (SEPM, 2002).

  16. Kuehl, S. A., Nittrouer, C. A. & DeMaster, D. J. Nature of sediment accumulation on the Amazon continental shelf. Cont. Shelf Res. 6, 209–225 (1986).

    Article  Google Scholar 

  17. Kuehl, S. A., Levy, B. M., Moore, W. S. & Allison, M. A. Subaqueous delta of the Ganges–Brahmaputra river system. Mar. Geol. 144, 81–96 (1997).

    Article  Google Scholar 

  18. Steel, R. J. et al. in Recent Advances in Models of Siliciclastic Shallow-Marine Stratigraphy (eds Hampton, G. J. et al.) 47–71 (SEPM, 2008).

  19. Pellegrini, C. et al. Fate of terrigenous organic carbon in muddy clinothems on continental shelves revealed by stratal geometries: insight from the Adriatic sedimentary archive. Glob. Planet. Change 203, 103539 (2021).

    Article  Google Scholar 

  20. Trincardi, F. et al. Ephemeral rollover points and clinothem evolution in the modern Po Delta based on repeated bathymetric surveys. Basin Res. 32, 402–418 (2020).

  21. Johnson Ibach, L. E. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. Am. Assoc. Pet. Geol. Bull. 66, 170–188 (1982).

    Google Scholar 

  22. Sageman, B. B., Gardner, M. H., Armentrout, J. M. & Murphy, A. E. Stratigraphic hierarchy of organic carbon-rich siltstones in deep-water facies, Brushy Canyon Formation (Guadalupian), Delaware Basin, West Texas. Geology 26, 451–454 (1988).

    Article  Google Scholar 

  23. Swenson, J. B., Paola, C., Pratson, L., Voller, V. R. & Murray, A. B. Fluvial and marine controls on combined subaerial and subaqueous delta progradation: morphodynamic modeling of compound-clinoform development. J. Geophys. Res. Earth Surf. 110, F02013 (2005).

    Article  Google Scholar 

  24. Houseknecht, D. W., Bird, K. J. & Schenk, C. J. Seismic analysis of clinoform depositional sequences and shelf-margin trajectories in Lower Cretaceous (Albian) strata, Alaska North Slope. Basin Res. 21, 644–654 (2009).

    Article  Google Scholar 

  25. Loseth, H., Dowdesdell, J. A., Batchelor, C. L. & Ottesen, D. 3D sedimentary architecture showing the inception of an Ice Age. Nat. Commun. 11, 2975 (2020).

    Article  Google Scholar 

  26. Hubbard, S. M., Fildani, A., Romans, B. W., Covault, J. A. & McHargue, T. R. High-relief slope clinoform development: insights from outcrop, Magallanes Basin, Chile. J. Sed. Res. 80, 357–375 (2010). (2010).

    Article  Google Scholar 

  27. Bauer, D. B., Hubbard, S. M., Covault, J. A. & Romans, B. W. Inherited depositional topography control on shelf-margin oversteepening, readjustment, and coarse-grained sediment delivery to deep water, Magallanes Basin, Chile. Front. Earth. Sci. 7, 358 (2020).

    Article  Google Scholar 

  28. Romans, B. W., Fildani, A., Graham, S. A., Hubbard, S. M. & Covault, J. A. Importance of predecessor basin history on the sedimentary fill of a retroarc foreland basin: provenance analysis of the Cretaceous Magallanes Basin, Chile (50–52° S). Basin Res. 22, 640–658 (2010).

    Article  Google Scholar 

  29. Fosdick, J. C. et al. Kinematic evolution of the Patagonian retroarc fold-and-thrust belt and Magallanes foreland basin, Chile and Argentina, 51° 30’ S. Geol. Soc. Am. Bull. 123, 1679–1698 (2011).

    Article  Google Scholar 

  30. Graham, G. H., Jackson, M. D. & Hampson, G. J. Three-dimensional modeling of clinoforms in shallow-marine reservoirs: part 1. Concepts and applications. Am. Assoc. Pet. Geol. Bull. 99, 1013–1047 (2015).

    Google Scholar 

  31. Nesbit, P. R. et al. Digital re‐evaluation of down‐dip channel‐fill architecture in deep‐water slope deposits: multi‐scale perspectives from UAV‐SfM. Depos. Rec. 7, 480–499 (2021).

    Article  Google Scholar 

  32. Palinkas, C. M. & Nittrouer, C. A. Clinoform sedimentation along the Apennine shelf, Adriatic Sea. Mar. Geol. 234, 245–260 (2006).

    Article  Google Scholar 

  33. Daniels, B. G. et al. Timing of deep-water slope evolution constrained by large-n detrital zircon and volcanic ash geochronology, Cretaceous Magallanes Basin, Chile. Geol. Soc. Am. Bull. 130, 438–454 (2018).

    Article  Google Scholar 

  34. Goni, M. A. et al. Terrigenous organic matter in sediments from the Fly River delta–clinoform system (Papua New Guinea). J. Geophys. Res. Earth Surf. 113, F01S10 (2008).

    Article  Google Scholar 

  35. Howell, J. A. et al. Sedimentological parameterization of shallow-marine reservoirs. Petro. Geosci. 14, 17–34 (2008).

    Article  Google Scholar 

  36. Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450–453 (2015).

    Article  Google Scholar 

  37. Yool, A. & Fasham, M. J. R. An examination of the “continental shelf pump” in an open ocean general circulation model. Glob. Biogeochem. Cycles 15, 831–844 (2001).

    Article  Google Scholar 

  38. Baudin, F., Rabouille, C. & Dennielou, B. Routing of terrestrial organic matter from the Congo River to the ultimate sink in the abyss: a mass balance approach. Geol. Belgica 23, 41–52 (2020).

    Google Scholar 

  39. Durrieu de Madron, X. et al. Particulate matter and organic carbon budgets for the Gulf of Lions (NW Mediterranean). Oceanol. Acta 23, 717–730 (2000).

    Article  Google Scholar 

  40. Schlünz, B., Schneider, R. R., Müller, P. J., Showers, W. J. & Wefer, G. Terrestrial organic carbon accumulation on the Amazon deep sea fan during the last glacial sea-level low stand. Chem. Geol. 159, 263–281 (1999).

    Article  Google Scholar 

  41. Cui, X., Bianchi, T. S., Savage, C. & Smith, R. W. Organic carbon burial in fjords: terrestrial versus marine inputs. Earth Planet. Sci. Lett. 451, 41–50 (2016).

    Article  Google Scholar 

  42. Smeaton, C. & Austin, W. E. N. Where’s the carbon: exploring the spatial heterogeneity of sedimentary carbon in mid-latitude fjords. Front. Earth Sci. 7, 269 (2019).

    Article  Google Scholar 

  43. Popp, B. N., Takigiku, R., Hayes, J. M., Louda, J. W. & Baker, E. W. The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter. Am. J. Sci. 289, 436–454 (1989).

    Article  Google Scholar 

  44. Meyers, P. A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114, 289–302 (1994).

    Article  Google Scholar 

  45. Lafargue, E., Marquis, F. & Pillot, D. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Rev. l’Institut Fr. du Pet. 53, 421–437 (1998).

    Google Scholar 

  46. Cornford, C. in Petroleum Geology of the North Sea: Basic Concepts and Recent Advances 4th edn (ed. Glennie, K. W.) Ch. 11 (Blackwell Science, 1998).

  47. Maende, A. Wildcat Compositional Analysis for Conventional and Unconventional Reservoir Assessments HAWK Petroleum Assessment Method Application note 052016–1, 11p (HAWK-PAM, 2016).

  48. Taylor, G. H. et al. Organic Petrology (Gebr. Borntraeger, 1998).

  49. Hartkopf-Fröder, C., Königshof, P., Littke, R. & Schwarzbauer, J. Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism: a review. Int. J. Coal Geol. 150-151, 74–119 (2015).

    Article  Google Scholar 

  50. Pickel, W. et al. Classification of liptinite—ICCP System 1994. Int. J. Coal Geol. 169, 40–51 (2017).

    Article  Google Scholar 

  51. Bourbonniere, R. A. & Meyers, P. A. Sedimentaty geolopid records of historical changes in the watersheds and productivities of Lake Ontario and Erie. Limnol. Oceanogr. 41, 352–359 (1996).

    Article  Google Scholar 

  52. Walther, J. in Lithogenesis der Gegenwart (ed. Fischer, Jena) 535–1055 (G. Fisher, 1894).

  53. Galy, V. V., Beyssac, O., France-Lanord, C. & Eglington, T. Recycling of graphite during Himalayan erosion: a geological stabilization of carbon in the crust. Science 322, 943–945 (2008).

    Article  Google Scholar 

  54. Milliman, J. D. & Syvitski, J. P. M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

    Article  Google Scholar 

  55. Nesbit, P. R., Durkin, P. R., Hugenholtz, C. H., Hubbard, S. M. & Kucharczyk, M. 3-D stratigraphic mapping using a digital outcrop model derived from UAV images and structure-from-motion photogrammetry. Geosphere 14, 2469–2486 (2018).

    Google Scholar 

  56. Englert, R. G., Hubbard, S. M., Coutts, D. S. & Matthews, W. A. Tectonically controlled initiation of contemporaneous deep-water channel systems along a Late Cretaceous continental margin, western British Columbia, Canada. Sedimentology 65, 2404–2438 (2018).

    Article  Google Scholar 

  57. Hilton, R. G., Galy, A., Hovius, N., Horng, M.-J. & Chen, H. The isotopic composition of particulate organic carbon in mountain rivers of Taiwan. Geochim. Cosmochim. Acta 74, 3164–3181 (2010).

    Article  Google Scholar 

  58. Spiker, E. C. in Flux of Organic Carbon by Rivers to the Oceans (eds. U.S. Department of Energy, Office of Energy Research, Office of Health and Environmental Research) 75–108 (National Academies Press, 1981).

  59. Gaines, S. M., Eglinton, G. & Rullkotter, J. Echoes of Life: What Fossil Molecules Reveal About Earth History (Oxford Univ. Press, 2009).

  60. Jarvie, D. Correlation of Tmax and Measured Vitrinite Reflectance (TCU Energy Institute, 2018).

  61. Espitalié, J. et al. Méthode rapide de caractérisation des roches mères, de leur potentiel pétrolier et de leur degré d’évolution. Rev. Inst. Fr. petr. 32, 32–45 (1977).

    Google Scholar 

  62. Behar, F., Beaumont, V., De, B. & Penteado, H. L. Rock-Eval 6 Technology: performances and developments. Oil Gas. Sci. Technol. Rev. IFP 56, 111–134 (2001).

    Article  Google Scholar 

  63. Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks. D7708 e 14. https://doi.org/10.1520/D7708e14 (ASTM International, 2014).

  64. Eglington, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1335 (1967).

    Article  Google Scholar 

  65. Blumer, M. R., Guillard, R. L. & Chase, T. Hydrocarbons of marine plankton. Mar. Biol. 8, 183–189 (1971).

    Article  Google Scholar 

  66. Sadler, P. M. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89, 569–584 (1981).

    Article  Google Scholar 

  67. Browning, J. V. et al. Chronology of Eocene–Miocene sequences on the New Jersey shallow shelf: implications for regional, interregional, and global correlations. Geosphere 9, 1434–1456 (2013).

    Article  Google Scholar 

  68. Cosgrove, G. I. E., Hodgson, D. M., Poyatos-Moré, M., Mountney, N. P. & McCaffrey, W. D. ; Filter or conveyor? Establishing relationships between clinoform rollover trajectory, sedimentary process regime, and grain character within intrashelf clinothems, offshore New Jersey, USA. J. Sed. Res. 88, 917–941 (2018).

    Article  Google Scholar 

  69. Paulissen, W. E., Luthi, S. M., Grunert, P., Coric, S. & Harzhauser, M. Integrated high-resolution stratigraphy of a middle to late Miocene sedimentary sequence in the central part of the Vienna Basin. Geol. Carpath. 62, 155–169 (2011).

    Article  Google Scholar 

  70. Borzi, A. et al. Late Miocene evolution of the Paleo Danube Delta (Vienna basin, Austria). Glob. Planet. Change https://doi.org/10.1016/j.gloplacha.2022.103769 (2022).

  71. Lease, R. O., Houseknecht, D. W. & Kylander-Clark, A. R. C. Quantifying large-scale continental shelf margin growth and dynamics across middle-Cretaceous Arctic Alaska with detrital zircon U–Pb dating. Geology https://doi.org/10.1130/G49118.1 (2022).

  72. Thompson, R. & Cameron, T. D. J. Palaeomagnetic study of Cenozoic sediments in North Sea boreholes: an example of a magnetostratigraphic conundrum in a hydrocarbon producing area. Geol. Soc. Spec. Publ. 98, 223–236 (1995).

    Article  Google Scholar 

  73. Neill, C. F. & Allison, M. A. Subaqueous deltaic formation on the Atchafalaya Shelf, Louisiana. Mar. Geol. 214, 411–430 (2005).

    Article  Google Scholar 

  74. Hart, B. S., Hamilton, T. S. & Barrie, J. B. Sedimentation rates and patterns on a deep-water delta (Fraser Delta, Canada): integration of high-resolution seismic stratigraphy, core lithofacies, and 137Cs fallout stratigraphy. J. Sediment. Res. 68, 556–568 (1998).

    Article  Google Scholar 

  75. Bassetti, M. A. et al. The 100-ka and rapid sea level changes recorded by prograding shelf sand bodies in the Gulf of Lions (western Mediterranean Sea). Geochem. Geophys. Geosyst. 9, GC001854 (2008).

    Article  Google Scholar 

  76. Berné, S., Jouet, G., Bassetti, M. A., Dennielou, B. & Taviani, M. Late glacial to preboreal sea-level recorded by the Rhone deltaic system (NW Mediterranean). Mar. Geol. 245, 65–88 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Francisco, L. Cárdenas and A. Cárdenas at Rincon Negro Ranch as well as Jose, Luis and Manuel at San Luis Ranch for allowing us to access their lands. We also thank the Alvarez–Roehrs family for our stay at Hotel Tres Pasos and helpful advice. We are grateful to S. Taylor (Isotope Science Lab) and K. Nightingale (Petroleum Reservoir Group) at the University of Calgary for their precious help in labs. Support for this research was provided by a Natural Sciences and Engineering Research Council of Canada Discovery Grant (RGPIN-2018-04223) held by S.M.H., as well as the Chile Slope Systems Joint Industry Project. Funding for organic petrography is provided by Natural Resources Canada (NRCan) provided by Geoscience for New Energy Supply (GNES). S.H. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 899546.

Author information

Authors and Affiliations

Authors

Contributions

S.H., B.W.R., S.M.H. and M.P-M. designed the study. S.H., T.G.E.P., B.W.R., S.M.H., M.P-M, D.B., R.G.E., S.A.K.-D. and P.R.N. collected the field data. S.H., O.H.A., G.S. and D.P.S. collected the organic geochemistry and petrology data. S.H., B.W.R., T.G.E.P., S.M.H., M.P-M., O.H.A. and D.P.S. analysed the data. P.R.N., T.G.E.P. and R.G.E. processed the UAV model. S.H. produced the figures. S.H., B.W.R. and S.M.H. wrote the manuscript, with contributions from all authors.

Corresponding author

Correspondence to Sophie Hage.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Craig Smeaton, Michael Shields, Claudio Pellegrini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: James Super and Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Study site location.

a. Location of Cerro Cazador in Southern Chile. b. Zoom in on Cerro Cazador. c. Location of samples in the central part of Cerro Cazador. Map data: Google © CNES Airbus.

Extended Data Fig. 2 Outcrop model of Cerro Cazador.

a. Satellite view (from the west) of the studied area in Cerro Cazador. Map data: Google © CNES Airbus. b. Digital outcrop model for the same area displayed in a. The green lines represent the mapped stratigraphic surfaces (prominent beds) identified from the model. c. stratigraphic surfaces projected in a 2-dimension space representing the same area as a. and b. The polygons drawn on top of the green lines represent the interpreted three main clinothems for this study and traced based on the stratigraphic surfaces (green lines).

Source data

Extended Data Fig. 3 Clinothem dimensions.

Sketch of the dimensions used for estimating organic carbon fluxes in the interpreted composite clinothem. SR = sedimentation rate.

Extended Data Fig. 4 HAWK-derived parameters measured on the studied section.

a. Geological section measured on Cerro Cazador. Stars symbols correspond to samples that were analysed for organic petrography (white and red) and biomarkers (red). b. Carbonate carbon measured by HAWK pyrolysis. c. Hydrogen Index derived from HAWK data: HI = 100 x S2/TOC. d. Oxygen index derived from HAWK data: OI = 100 x S3/TOC.

Source data

Extended Data Fig. 5 Pseudo Van Krevelan diagram and Hydrogen Index vs Tmax diagrams.

Pseudo-Van Krevelan diagram with Hydrogen index versus oxygen index measured by HAWK pyrolysis. b. Hydrogen index vs Tmax measured by HAWK pyrolysis. Four types of kerogen are indicated in the diagrams: Type 1 is oil-prone and typically marine-sourced, Type 2 is oil-prone and lacustrine-sourced, Type 3 is gas-prone and sourced from land plants, Type 4 is inert (no potential) and sourced from land plants46.

Source data

Extended Data Fig. 6 Biomarkers and Vitrinite reflectance data obtained on the studied section.

a. Geological section measured on Cerro Cazador. b. Terrigenous-to-aquatic ratio of long-chain alkanes51. c. Vitrinite reflectance measured on pellets.

Source data

Extended Data Table 1 Compilation of clinothem characteristics found in67,68,69,70,71,72,73,74,75,76 the literature
Extended Data Table 2 Organic Carbon (OC) mass, flux and yields calculated in the studied composite clinothem

Source data

Source Data Fig. 2

Sample codes, Clinothem subdivision (x axis in Fig. 2b) and TOC content (y axis in Fig. 2b).

Source Data Fig. 3

Sample codes, stratigraphic position (y axis in Fig. 3a,b,c,d), described facies (x axis in Fig. 3a), TOC content (x axis in Fig. 3b), carbon stable isotopes (x axis in Fig. 3c), hydrogen index (x axis in Fig. 3d).

Source Data Extended Data Fig. 2

Codes, geographic coordinates (UTM) and stratigraphic positions of each sample displayed in ED Fig. 2a and b.

Source Data Extended Data Fig. 4

Sample codes, stratigraphic position (y axis in ED Fig. 4a,b,c,d), described facies (x axis in Fig. 4a), carbon carbonate (TIC) content (x axis in ED Fig. 4b), hydrogen index (x axis in Fig. 4c), oxygen index (x axis in Fig. 4d).

Source Data Extended Data Fig. 5

Sample codes, hydrogen index (y axis in ED Fig. 5a), oxygen index (x axis in ED Fig. 5a) and Tmax (x axis in ED Fig. 5b).

Source Data Extended Data Fig. 6

Sample codes, stratigraphic position, concentration of n-alkanes used to calculate the TAR ratio displayed in ED Fig. 6b and vitrinite reflectance data displayed in ED Fig. 6c. n represents the number of observations made on each pellet sample. Dots represent76 the mean value, horizontal line represents the standard deviation value between n observations per sample.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hage, S., Romans, B.W., Peploe, T.G.E. et al. High rates of organic carbon burial in submarine deltas maintained on geological timescales. Nat. Geosci. 15, 919–924 (2022). https://doi.org/10.1038/s41561-022-01048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-01048-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing