Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Persistent late Permian to Early Triassic warmth linked to enhanced reverse weathering

A Publisher Correction to this article was published on 26 October 2022

This article has been updated

Abstract

In the Precambrian, reverse weathering—a process consuming oceanic silica, metal cations and alkalinity to form marine clays—was a key control of the long-term carbon cycle. However, the appearance of marine silicifiers decreased the importance of this process in regulating climate in the Phanerozoic eon. Here, we present seawater lithium and strontium isotope records derived from bulk carbonates and fossil brachiopods spanning the Permian to Early Triassic, an interval of pronounced climatic fluctuations and widespread extinctions. We show that the lithium isotope composition of seawater remained constant for most of the Permian until a sharp decrease in the late Permian (~254 Myr ago) with low seawater Li isotope values (~10‰) persisting throughout the Early Triassic. Based on box modelling, changes in chemical weathering and hydrothermal fluxes are unable to explain the abrupt decline in seawater Li isotopes. Rather, increased lithium output fluxes through enhanced reverse weathering are required to produce the low Li isotope values of the late Permian and Early Triassic (253–247 Myr ago). Increased reverse weathering rates could explain the failure of chemical weathering to draw down atmospheric CO2 levels during the Early Triassic, leading to protracted biotic recovery from the Permian–Triassic mass extinction.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Palaeogeographic maps of study areas.
Fig. 2: Strontium and lithium isotope compositions in seawater reconstructed in this study and compiled from the literature with chronology of tectonic, climatic and biological events occurring during the Permian and Early Triassic.
Fig. 3: Conceptual reconstruction of the marine Li isotope budget during five critical time periods when large δ7Li fluctuations occurred.

Change history

References

  1. Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Article  Google Scholar 

  2. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  Google Scholar 

  3. Urey, H. C. On the early chemical history of the Earth and the origin of life. Proc. Natl Acad. Sci. USA 38, 351–363 (1952).

    Article  Google Scholar 

  4. Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).

    Article  Google Scholar 

  5. Mackenzie, F. T., Kump, L. R., Kovacs, J. A., Shoner, S. C. & Ellison, J. J. Reverse weathering, clay mineral formation, and oceanic element cycles metal-carbon bonds in nature. Science 270, 586 (1995).

    Article  Google Scholar 

  6. Aller, R. C. in Treatise on Geochemistry 2nd edn, Vol. 8 (ed. Turekian, H.D.H.K.) 293–334 (Elsevier, 2014).

  7. Michalopoulos, P. & Aller, R. C. Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochim. Cosmochim. Acta 68, 1061–1085 (2004).

    Article  Google Scholar 

  8. Tréguer, P. J. & de La Rocha, C. L. The world ocean silica cycle. Annu. Rev. Mar. Sci. 5, 477–501 (2013).

    Article  Google Scholar 

  9. Michalopoulos, P. & Aller, R. C. Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science 270, 614–617 (1995).

    Article  Google Scholar 

  10. Maliva, R. G., Knoll, A. H. & Siever, R. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios 4, 519 (1989).

    Article  Google Scholar 

  11. Siever, R. The silica cycle in the Precambrian. Geochim. Cosmochim. Acta 56, 3265–3272 (1992).

    Article  Google Scholar 

  12. Beauchamp, B. & Baud, A. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 37–63 (2002).

    Article  Google Scholar 

  13. Beauchamp, B. & Grasby, S. E. Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion. Palaeogeogr. Palaeoclimatol. Palaeoecol. 350–352, 73–90 (2012).

    Article  Google Scholar 

  14. Frakes, L. A., Francis, J. E. & Syktus, J. I. Climate Modes of the Phanerozoic (Cambridge Univ. Press, 1992).

  15. Wang, W. et al. Revisiting the Permian seawater 87Sr/86Sr record: new perspectives from brachiopod proxy data and stochastic oceanic box models. Earth Sci. Rev. 218, 103679 (2021).

    Article  Google Scholar 

  16. Korte, C., Kozur, H. W., Bruckschen, P. & Veizer, J. Strontium isotope evolution of Late Permian and Triassic seawater. Geochim. Cosmochim. Acta 67, 47–62 (2003).

    Article  Google Scholar 

  17. Joachimski, M. M. et al. Five million years of high atmospheric CO2 in the aftermath of the Permian–Triassic mass extinction. Geology 50, 650–654 (2022).

  18. Sun, Y. et al. Lethally hot temperatures during the Early Triassic greenhouse. Science 338, 366–370 (2012).

    Article  Google Scholar 

  19. Gernon, T. M. et al. Global chemical weathering dominated by continental arcs since the mid-Palaeozoic. Nat. Geosci. 14, 690–696 (2021).

    Article  Google Scholar 

  20. Coogan, L. A. & Dosso, S. E. Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater. Earth Planet. Sci. Lett. 415, 38–46 (2015).

    Article  Google Scholar 

  21. Bataille, C. P., Willis, A., Yang, X. & Liu, X. Continental igneous rock composition: a major control of past global chemical weathering. Sci. Adv. 3, e1602183 (2017).

    Article  Google Scholar 

  22. Penniston-Dorland, S., Liu, X.-M. & Rudnick, R. L. Lithium isotope geochemistry. Rev. Mineral. Geochem. 82, 165–217 (2017).

    Article  Google Scholar 

  23. Vollstaedt, H. et al. The Phanerozoic δ88/86Sr record of seawater: new constraints on past changes in oceanic carbonate fluxes. Geochim. Cosmochim. Acta 128, 249–265 (2014).

    Article  Google Scholar 

  24. Li, G. & West, A. J. Evolution of Cenozoic seawater lithium isotopes: coupling of global denudation regime and shifting seawater sinks. Earth Planet. Sci. Lett. 401, 284–293 (2014).

    Article  Google Scholar 

  25. Misra, S. & Froelich, P. N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).

    Article  Google Scholar 

  26. Dellinger, M. et al. The effects of diagenesis on lithium isotope ratios of shallow marine carbonates. Am. J. Sci. 320, 150–184 (2020).

    Article  Google Scholar 

  27. Dellinger, M. et al. The Li isotope composition of marine biogenic carbonates: patterns and Mechanisms. Geochim. Cosmochim. Acta 236, 315–335 (2018).

    Article  Google Scholar 

  28. Cao, C., Liu, X.-M., Bataille, C. P. & Liu, C. What do Ce anomalies in marine carbonates really mean? A perspective from leaching experiments. Chem. Geol. 532, 119413 (2020).

    Article  Google Scholar 

  29. Song, H. et al. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth Planet. Sci. Lett. 424, 140–147 (2015).

    Article  Google Scholar 

  30. Pogge von Strandmann, P. A. E. et al. Assessing bulk carbonates as archives for seawater Li isotope ratios. Chem. Geol. 530, 119338 (2019).

    Article  Google Scholar 

  31. Washington, K. E. et al. Lithium isotope composition of modern and fossil Cenozoic brachiopods. Geology 48, 1058–1601 (2020).

    Article  Google Scholar 

  32. Gaspers, N. et al. Lithium elemental and isotope systematics of modern and cultured brachiopods: implications for seawater evolution. Chem. Geol. 586, 120566 (2021).

    Article  Google Scholar 

  33. Kalderon-Asael, B. et al. A lithium-isotope perspective on the evolution of carbon and silicon cycles. Nature 595, 394–398 (2021).

    Article  Google Scholar 

  34. Tierney, K. E. & Saltzman, M. R. Carbon and Strontium Isotope Stratigraphy of the Permian from Nevada and China: Implications from an Icehouse to Greenhouse Transition. PhD thesis, Ohio State Univ. (2010).

  35. Sun, Y. D. et al. Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 465, 42–63 (2017).

    Article  Google Scholar 

  36. Wu, H. et al. Time-calibrated Milankovitch cycles for the Late Permian. Nat. Commun. 4, 2452 (2013).

    Article  Google Scholar 

  37. Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).

    Article  Google Scholar 

  38. Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).

    Article  Google Scholar 

  39. Miall, A. D.(ed.) The Sedimentary Basins of the United States and Canada 1–29 (Sedimentary Basins of the World Vol. 5, Elsevier, 2008).

  40. Blakey, R. C. in Resolving the Late Paleozoic Ice Age in Time and Space (eds Fielding, C. R. et al.) 1–28 (Geological Society of America, 2008).

  41. Goddéris, Y. et al. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nat. Geosci. 10, 382–386 (2017).

    Article  Google Scholar 

  42. West, A. J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks. Geology 40, 811–814 (2012).

    Article  Google Scholar 

  43. Foelich, F. & Misra, S. Was the late Paleocene–early Eocene hot because Earth was flat? An ocean lithium view of mountain building, continental weathering, carbon dioxide and Earth’s Cenozoic climate. Oceanography 27, 36–49 (2014).

    Article  Google Scholar 

  44. Gabet, E. J. & Mudd, S. M. A theoretical model coupling chemical weathering rates with denudation rates. Geology 37, 151–154 (2009).

    Article  Google Scholar 

  45. Goddéris, Y., Donnadieu, Y., le Hir, G., Lefebvre, V. & Nardin, E. The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth Sci. Rev. 128, 122–138 (2014).

    Article  Google Scholar 

  46. Berner, R. A. The carbon and sulfur cycles and atmospheric oxygen from Middle Permian to Middle Triassic. Geochim. Cosmochim. Acta 69, 3211–3217 (2005).

    Article  Google Scholar 

  47. Chen, B. et al. Permian ice volume and palaeoclimate history: oxygen isotope proxies revisited. Gondwana Res. 24, 77–89 (2013).

    Article  Google Scholar 

  48. Wang, W. et al. A high-resolution Middle to Late Permian paleotemperature curve reconstructed using oxygen isotopes of well-preserved brachiopod shells. Earth Planet. Sci. Lett. 540, 116245 (2020).

    Article  Google Scholar 

  49. Dellinger, M. et al. Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes. Geochim. Cosmochim. Acta 164, 71–93 (2015).

    Article  Google Scholar 

  50. Jurikova, H. et al. Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations. Nat. Geosci. 13, 745–750 (2020).

    Article  Google Scholar 

  51. Payne, J. L. et al. in Large Perturbations of the Carbon Cycle During Recovery from the End-Permian Extinction. Science 305, 506–509 (2004).

    Article  Google Scholar 

  52. Sedlacek, A. R. C. et al. 87Sr/86Sr stratigraphy from the Early Triassic of Zal, Iran: linking temperature to weathering rates and the tempo of ecosystem recovery. Geology 42, 779–782 (2014).

    Article  Google Scholar 

  53. Conley, D. J. et al. Biosilicification drives a decline of dissolved Si in the oceans through geologic time. Front. Mar. Sci. 4, 397 (2017).

    Article  Google Scholar 

  54. Isozaki, Y. Permo–Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276, 235–238 (1997).

    Article  Google Scholar 

  55. Sperling, E. A. & Ingle, J. C. A Permian–Triassic boundary section at Quinn River crossing, northwestern Nevada, and implications for the cause of the Early Triassic chert gap on the western Pangean margin. Bull. Geol. Soc. Am. 118, 733–746 (2006).

    Article  Google Scholar 

  56. Grasby, S. E., Beauchamp, B., Embry, A. & Sanei, H. Recurrent Early Triassic ocean anoxia. Geology 41, 175–178 (2013).

    Article  Google Scholar 

  57. Grasby, S. E. & Beauchamp, B. Latest Permian to Early Triassic basin-to-shelf anoxia in the Sverdrup Basin, Arctic Canada. Chem. Geol. 264, 232–246 (2009).

    Article  Google Scholar 

  58. Haq, B. U. & Schutter, S. R. A chronology of Paleozoic sea-level changes. Science 322, 64–68 (2008).

    Article  Google Scholar 

  59. Chen, Z. Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375–383 (2012).

    Article  Google Scholar 

  60. Payne, J. & Kump, L. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet. Sci. Lett. 256, 264–277 (2007).

    Article  Google Scholar 

  61. Wang, X. et al. Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments. Earth Planet. Sci. Lett. 496, 159–167 (2018).

    Article  Google Scholar 

  62. Korte, C., Jasper, T., Kozur, H. W. & Veizer, J. 87Sr/86Sr record of Permian seawater. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240, 89–107 (2006).

    Article  Google Scholar 

  63. Kump, L. R. Prolonged Late Permian–Early Triassic hyperthermal: failure of climate regulation? Phil. Trans. R. Soc. A 376, 20170078 (2018).

  64. Liu, Z., Selby, D., Zhang, H. & Shen, S. Evidence for volcanism and weathering during the Permian–Triassic mass extinction from Meishan (South China) osmium isotope record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 553, 109790 (2020).

    Article  Google Scholar 

  65. Algeo, T. J. & Twitchett, R. J. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38, 1023–1026 (2010).

    Article  Google Scholar 

  66. Coogan, L. A., Gillis, K. M., Pope, M. & Spence, J. The role of low-temperature (off-axis) alteration of the oceanic crust in the global Li-cycle: insights from the Troodos ophiolite. Geochim. Cosmochim. Acta 203, 201–215 (2017).

    Article  Google Scholar 

  67. Pogge von Strandmann, P. A. E. et al. Lithium isotope evidence for enhanced weathering and erosion during the Paleocene–Eocene Thermal Maximum. Sci. Adv. 7, eabh4224 (2021).

  68. Hindshaw, R. S. et al. Experimental constraints on Li isotope fractionation during clay formation. Geochim. Cosmochim. Acta 250, 219–237 (2019).

    Article  Google Scholar 

  69. Pistiner, J. S. et al. Lithium-isotope fractionation during continental weathering processes. Earth Planet. Sci. Lett. 214, 327–339 (2003).

    Article  Google Scholar 

  70. Zhang, F. et al. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Sci. Adv. 4, e1602921 (2018).

    Article  Google Scholar 

  71. Huh, Y., Chan, L. H., Zhang, L. & Edmond, J. M. Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget. Geochim. Cosmochim. Acta 62, 2039–2051 (1998).

    Article  Google Scholar 

  72. Chan, L. H., Gieskes, J. M., Chen-Feng, Y. & Edmond, J. M. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta 58, 4443–4454 (1994).

    Article  Google Scholar 

  73. Chan, L. H., Alt, J. C. & Teagle, D. A. H. Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater–basalt exchange at ODP Sites 504B and 896A. Earth Planet. Sci. Lett. 201, 187–201 (2002).

    Article  Google Scholar 

  74. Scotese, C. R. Atlas of Earth History: Volume 1, Paleogeography (PALEOMAP Project, 2001).

  75. Needham, L., Schmitz, M. D. & Davydov, V. I. A precise and accurate seawater Sr curve from Late Carboniferous–Early Permian conodonts. In GSA Abstracts with Programs Vol. 38, 184 (Geological Society of America, 2006).

  76. Hautmann, M. et al. Competition in slow motion: the unusual case of benthic marine communities in the wake of the end-Permian mass extinction. Palaeontology 58, 871–901 (2015).

    Article  Google Scholar 

  77. Shen, S. Z., Wang, Y., Henderson, C. M., Cao, C. Q. & Wang, W. Biostratigraphy and lithofacies of the Permian system in the Laibin-Heshan area of Guangxi, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 465, 42–63 (2007).

    Google Scholar 

  78. Sweet, D. The Late Paleozoic Tectonostratigraphy of the Central Pequop Mountains, Elko County, Nevada. MSc thesis, Biose State Univ. (2003).

  79. Mei, S., Jin, Y. & Wardlaw, B. R. Conodont succession of the Guadalupian–Lopingian boundary strata in Laibin of Guangxi, China and west Texas, USA. Palaeoworld 9, 53–76 (1998).

    Google Scholar 

  80. Galfetti, T. et al. Late Early Triassic climate change: insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 394–411 (2007).

    Article  Google Scholar 

  81. Huang, Y. et al. Restoration of reef ecosystems following the Guadalupian–Lopingian boundary mass extinction: evidence from the Laibin area, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 8–22 (2019).

    Article  Google Scholar 

  82. Shen, S. Z. et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372 (2011).

    Article  Google Scholar 

  83. Ovtcharova, M. et al. New Early to Middle Triassic U–Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth Planet. Sci. Lett. 243, 463–475 (2006).

    Article  Google Scholar 

  84. Lehrmann, D. J. et al. Timing of recovery from the end-Permian extinction: geochronologic and biostratigraphi constraints from South China. Geology 34, 1053–1056 (2006).

    Article  Google Scholar 

  85. Stevens, C. H. Fasciculate rugose corals from Gzhelian and Lower Permian strata, Pequop Mountains, northeast Nevada. J. Paleontol. 82, 1190–1200 (2008).

    Article  Google Scholar 

  86. Shen, S. et al. A comparison of the biological, geological events and environmental backgrounds between the Neoproterozoic–Cambrian and Permian–Triassic transitions. Sci. China Earth Sci. 53, 1873–1884 (2010).

    Article  Google Scholar 

  87. Sweet, D. & Snyder, W. S. Middle Pennsylvanian through Early Permian tectonically controlled basins: evidence from the central Pequop Mountains, northeast Nevada: Late Paleozoic tectonics and hydrocarbon systems of western North America-The greater Ancestral Rocky Mountains: Tulsa. In AAPG Search and Discovery Article; AAPG Hedberg Research Conference 74–77 (2002).

  88. Wang, W., Cao, C. & Wang, Y. The carbon isotope excursion on GSSP candidate section of Lopingian–Guadalupian boundary. Earth Planet. Sci. Lett. 220, 57–67 (2004).

    Article  Google Scholar 

  89. Qiu, Z., Wang, Q., Zou, C., Yan, D. & Wei, H. Transgressive–regressive sequences on the slope of an isolated carbonate platform (Middle–Late Permian, Laibin, South China). Facies 60, 327–345 (2014).

    Article  Google Scholar 

  90. Jin, Y. et al. The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian Stage (Permian). Episodes 29, 253–262 (2006).

    Article  Google Scholar 

  91. Xiang, L. et al. Oceanic redox evolution across the end-Permian mass extinction at Shangsi, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 59–71 (2016).

    Article  Google Scholar 

  92. Li, Z.-S. et al. Mass extinction and geological events between Paleozoic and Mesozoic era. Acta Geol. Sin. 60, 1 (1986).

    Google Scholar 

  93. Galfetti, T. et al. Evolution of Early Triassic outer platform paleoenvironments in the Nanpanjiang basin (South China) and their significance for the biotic recovery. Sediment. Geol. 204, 36–60 (2008).

    Article  Google Scholar 

  94. Li, W., Liu, X. & Godfrey, L. V. Optimisation of lithium chromatography for isotopic analysis in geological reference materials by MC‐ICP‐ MS. Geostand. Geoanal. Res. 43, 261–276 (2019).

    Article  Google Scholar 

  95. Liu, X.-M. & Li, W. Optimization of lithium isotope analysis in geological materials by quadrupole ICP-MS. J. Anal. At. Spectrom. 34, 1708–1717 (2019).

    Article  Google Scholar 

  96. Korte, C., Kozur, H. W. & Veizer, J. δ13C and δ18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature. Palaeogeogr. Palaeoclimatol. Palaeoecol. 226, 287–306 (2005).

    Article  Google Scholar 

  97. Veizer, J. et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 161, 59–88 (1999).

    Article  Google Scholar 

  98. Huh, Y., Chan, L. H. & Edmond, J. M. Lithium isotopes as a probe of weathering processes: Orinoco River. Earth Planet. Sci. Lett. 194, 189–199 (2001).

    Article  Google Scholar 

  99. Pogge von Strandmann, P. A. E. et al. Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth Planet. Sci. Lett. 251, 134–147 (2006).

    Article  Google Scholar 

  100. Witherow, R. A., Lyons, W. B. & Henderson, G. M. Lithium isotopic composition of the McMurdo Dry Valleys aquatic systems. Chem. Geol. 275, 139–147 (2010).

    Article  Google Scholar 

  101. Lemarchand, E., Chabaux, F., Vigier, N., Millot, R. & Pierret, M. C. Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France). Geochim. Cosmochim. Acta 74, 4612–4628 (2010).

    Article  Google Scholar 

  102. Liu, X.-M. & Rudnick, R. L. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes. Proc. Natl Acad. Sci. USA 108, 20873–20880 (2011).

    Article  Google Scholar 

  103. Dellinger, M. et al. Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion. Earth Planet. Sci. Lett. 401, 359–372 (2014).

    Article  Google Scholar 

  104. Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    Article  Google Scholar 

  105. Stoffyn-Egli, P. & Mackenzie, F. T. Mass balance of dissolved lithium in the oceans. Geochim. Cosmochim. Acta 48, 859–872 (1984).

    Article  Google Scholar 

  106. Seyfried, W. E., Janecky, D. R. & Mottl, M. J. Alteration of the oceanic crust: implications for geochemical cycles of lithium and boron. Geochim. Cosmochim. Acta 48, 557–569 (1984).

    Article  Google Scholar 

  107. Gao, Y. et al. Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256. Geochem. Geophys. Geosyst. 13 (2012).

  108. Vigier, N. et al. Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim. Cosmochim. Acta 72, 780–792 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Li for help with Li chromatography and L. Godfrey for assisting with part of Li isotope analysis at the Rutgers University. We thank R. Mills, Q. Zhong Y. An for their help with Sr isotope analysis. We also appreciate M. Liu and Z. Zhu for helping with modelling learning, and S. Shen for helpful discussion. C.C. acknowledges funding from NSFC (grant 41991321) and the Martin Graduate Research Fund from the Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill. X.-M.L. acknowledges funding support from the University of North Carolina at Chapel Hill. H.S. acknowledges funding provided by the NSFC (grant 41821001). Z.Z. acknowledges funding provided by the NSFC (grant 41873002).

Author information

Authors and Affiliations

Authors

Contributions

X-M.L. and C.P.B. designed the research; H.S., H.W, K.T.C., C.K. and M.R.S. provided rock samples; C.C., C.P.B. and Z. Z. performed geochemical analysis; C.C., X-M. L. and C.P.B. wrote the paper with contributions from all co-authors.

Corresponding author

Correspondence to Xiao-Ming Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor(s): James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Stratigraphic record of the five studied sections with associated age model and geochemical records (δ7Li, δ13C).

The stratigraphy and biozones in the sections Ninemile, Rockland Ridge, Tieqiao are from34,35,81. Stratigraphy, U-Pb ages and carbon isotope record in the Shangsi section are from36. Stratigraphy of the Shanggang section are unpublished data from29. Error bars represent long term precision (2 SD) of 1.1‰ for δ7Li measurements at UNC-Chapel Hill and calculated 2 SD for repeatedly measured δ7Li values (Supplementary Data Table 1). Skull and crossbone silhouette extracted from www.flaticon.com.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Supplementary Discussion.

Supplementary Table 1

Geochemical data generated in this study.

Supplementary Table 2

Compiled Sr isotope ratios reported in conodonts and brachiopods.

Supplementary Table 3

Long-term Li isotope measurement of geologic reference materials NIST-1d and JG-2.

Supplementary Table 4

Semi-quantitative mineralogy of samples analysed in this study based on XRD.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Bataille, C.P., Song, H. et al. Persistent late Permian to Early Triassic warmth linked to enhanced reverse weathering. Nat. Geosci. 15, 832–838 (2022). https://doi.org/10.1038/s41561-022-01009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-01009-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing