Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements

Abstract

Airborne mineral dust particles can act as natural seeds for cirrus clouds in the upper troposphere. However, the atmospheric abundance of dust is unconstrained in cirrus-forming regions, hampering our ability to predict these radiatively important clouds. Here we present global-scale measurements of dust aerosol abundance in the upper troposphere and incorporate these into a detailed cirrus-formation model. We show that dust aerosol initiates cirrus clouds throughout the extra-tropics in all seasons and dominates cirrus formation in the Northern Hemisphere (75–93% of clouds seasonally). Using a global transport model with improved dust treatment, we also explore which of Earth’s deserts are the largest contributors of dust aerosol to cirrus-forming regions. We find that the meteorological environment downstream of each emission region modulates dust atmospheric lifetime and transport efficiency to the upper troposphere so that source contributions are disproportionate to emissions. Our findings establish the critical role of dust in Earth’s climate system through the formation of cirrus clouds.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Global-scale airborne sampling of mineral dust aerosol during four NASA ATom campaigns.
Fig. 2: Dust aerosol measurements and simulations during ATom1 in Aug. 2016.
Fig. 3: Annual cycle of UT dust sourced from each desert emission zone from the revised CESM/CARMA model.
Fig. 4: Predicting cirrus formation by combining in situ measurements with cloud–aerosol simulations.
Fig. 5: Mineral dust’s role in global cirrus cloud formation evaluated from all ATom deployments.

Data availability

In situ data and model output for this study are publically available at https://doi.org/10.3334/ORNLDAAC/2006. ATom aircraft data are publically available at https://doi.org/10.3334/ORNLDAAC/1925.

Code availability

Code for the CESM model is publically available at http://www.cesm.ucar.edu/models/cesm1.0/. Code for the GEOS model is publically available at https://gmao.gsfc.nasa.gov/GEOS_systems/.

References

  1. Boucher, O. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 7 and 8 (IPCC, Cambridge Univ. Press, 2013).

  2. Cziczo, D. J. et al. Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 340, 1320–1324 (2013).

    Google Scholar 

  3. Twohy, C. H. Measurements of Saharan dust in convective clouds over the tropical eastern Atlantic Ocean. J. Atmos. Sci. 72, 75–81 (2015).

    Google Scholar 

  4. Kanji, Z. A. et al. Overview of ice nucleating particles. Meteorol. Monogr. 58, 1.1–1.33 (2017).

    Google Scholar 

  5. Lohmann, U. & Gasparini, B. A cirrus cloud climate dial? Science 357, 248–249 (2017).

    Google Scholar 

  6. Knippertz, P. & Stuut, J.-B. W. (eds) Mineral Dust (Springer, 2014).

  7. Huneeus, N. et al. Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 11, 7781–7816 (2011).

    Google Scholar 

  8. Kok, J. F. et al. Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat. Geosci. 10, 274–278 (2017).

    Google Scholar 

  9. Cakmur, R. V. et al. Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations. J. Geophys. Res. Atmos. 111, D06207 (2006).

    Google Scholar 

  10. Yu, H. et al. Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements. Remote Sens. Environ. 159, 232–249 (2015).

    Google Scholar 

  11. Koffi, B. et al. Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. J. Geophys. Res. Atmos. 121, 7254–7283 (2016).

    Google Scholar 

  12. Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation (Springer, 2010).

  13. Kipling, Z. et al. Constraints on aerosol processes in climate models from vertically-resolved aircraft observations of black carbon. Atmos. Chem. Phys. 13, 5969–5986 (2013).

    Google Scholar 

  14. Sayer, A. M. et al. Satellite Ocean Aerosol Retrieval (SOAR) algorithm extension to S‐NPP VIIRS as part of the ‘Deep Blue’ aerosol project. J. Geophys. Res. Atmos. 123, 380–400 (2018).

    Google Scholar 

  15. Shi, Y. et al. A critical examination of spatial biases between MODIS and MISR aerosol products—application for potential AERONET deployment. Atmos. Meas. Tech. 4, 2823–2836 (2011).

    Google Scholar 

  16. Winker, D. M. et al. The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys. 13, 3345–3361 (2013).

    Google Scholar 

  17. Froyd, K. D. et al. A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry. Atmos. Meas. Tech. 12, 6209–6239 (2019).

    Google Scholar 

  18. Bullard, J. E. et al. High-latitude dust in the Earth system. Rev. Geophys. 54, 447–485 (2016).

    Google Scholar 

  19. Yu, P. et al. Evaluations of tropospheric aerosol properties simulated by the Community Earth System Model with a sectional aerosol microphysics scheme. J. Adv. Model. Earth Syst. 7, 865–914 (2015).

    Google Scholar 

  20. Colarco, P., da Silva, A., Chin, M. & Diehl, T. Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. 115, D14207 (2010).

    Google Scholar 

  21. Yu, P. et al. Efficient in-cloud removal of aerosols by deep convection. Geophys. Res. Lett. 46, 1061–1069 (2019).

    Google Scholar 

  22. Schill, G. P. et al. Widespread biomass burning smoke throughout the remote troposphere. Nat. Geosci. 13, 422–427 (2020).

    Google Scholar 

  23. Formenti, P. et al. Regional variability of the composition of mineral dust from western Africa: results from the AMMA SOP0/DABEX and DODO field campaigns. J. Geophys. Res. Atmos. 113, D00C13 (2008).

    Google Scholar 

  24. Lieke, K. et al. Particle chemical properties in the vertical column based on aircraft observations in the vicinity of Cape Verde Islands. Tellus B Chem. Phys. Meteorol. 63, 497–511 (2011).

    Google Scholar 

  25. Weinzierl, B. et al. The Saharan aerosol long-range transport and aerosol–cloud-interaction experiment: overview and selected highlights. Bull. Am. Meteorol. Soc. 98, 1427–1451 (2017).

    Google Scholar 

  26. Ryder, C. L. et al. Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic. Atmos. Chem. Phys. 18, 17225–17257 (2018).

    Google Scholar 

  27. Price, H. C. et al. Atmospheric ice-nucleating particles in the dusty tropical Atlantic. J. Geophys. Res. Atmos. 123, 2175–2193 (2018).

    Google Scholar 

  28. Wiacek, A., Peter, T. & Lohmann, U. The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds. Atmos. Chem. Phys. 10, 8649–8667 (2010).

    Google Scholar 

  29. Tsai, F., Chen, G. T.-J., Liu, T.-H., Lin, W.-D. & Tu, J.-Y. Characterizing the transport pathways of Asian dust. J. Geophys. Res. 113, D17311 (2008).

    Google Scholar 

  30. Xu, C., Ma, Y., Yang, K. & You, C. Tibetan Plateau impacts on global dust transport in the upper troposphere. J. Clim. 31, 4745–4756 (2018).

    Google Scholar 

  31. Ma, J. et al. Modeling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon. Atmos. Chem. Phys. 19, 11587–11612 (2019).

    Google Scholar 

  32. Mahowald, N. M. Anthropocene changes in desert area: sensitivity to climate model predictions. Geophys. Res. Lett. 34, L18817 (2007).

    Google Scholar 

  33. Kok, J. F., Ward, D. S., Mahowald, N. M. & Evan, A. T. Global and regional importance of the direct dust-climate feedback. Nat. Commun. 9, 241 (2018).

    Google Scholar 

  34. Chin, M. et al. Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmos. Chem. Phys. 14, 3657–3690 (2014).

    Google Scholar 

  35. Gettelman, A. et al. Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res. 115, D18216 (2010).

    Google Scholar 

  36. Kuebbeler, M., Lohmann, U., Hendricks, J. & Kärcher, B. Dust ice nuclei effects on cirrus clouds. Atmos. Chem. Phys. 14, 3027–3046 (2014).

    Google Scholar 

  37. Krämer, M. et al. A microphysics guide to cirrus—part 2: climatologies of clouds and humidity from observations. Atmos. Chem. Phys. 20, 12569–12608 (2020).

    Google Scholar 

  38. Ullrich, R. et al. A new ice nucleation active site parameterization for desert dust and soot. J. Atmos. Sci. 74, 699–717 (2017).

    Google Scholar 

  39. Mitchell, D. L., Rasch, P., Ivanova, D., McFarquhar, G. & Nousiainen, T. Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations. Geophys. Res. Lett. 35, L09806 (2008).

    Google Scholar 

  40. Sanderson, B. M., Piani, C., Ingram, W. J., Stone, D. A. & Allen, M. R. Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Clim. Dyn. 30, 175–190 (2008).

    Google Scholar 

  41. Jensen, E. J. et al. Heterogeneous ice nucleation in the tropical tropopause layer. J. Geophys. Res. Atmos. 123, 12210–12227 (2018).

    Google Scholar 

  42. Mace, G. G. et al. A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res. Atmos. 114, D00A26 (2009).

    Google Scholar 

  43. Petzold, A. et al. Upper tropospheric water vapour and its interaction with cirrus clouds as seen from IAGOS long-term routine: in situ observations. Faraday Discuss. 200, 229–249 (2017).

    Google Scholar 

  44. Haag, W. et al. Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity. Atmos. Chem. Phys. 3, 1791–1806 (2003).

    Google Scholar 

  45. Gettelman, A., Fetzer, E. J., Eldering, A. & Irion, F. W. The global distribution of supersaturation in the upper troposphere from the Atmospheric Infrared Sounder. J. Clim. 19, 6089–6103 (2006).

    Google Scholar 

  46. Mitchell, D. L., Garnier, A., Pelon, J. & Erfani, E. CALIPSO (IIR–CALIOP) retrievals of cirrus cloud ice-particle concentrations. Atmos. Chem. Phys. 18, 17325–17354 (2018).

    Google Scholar 

  47. Sourdeval, O. et al. Ice crystal number concentration estimates from lidar-radar satellite remote sensing—part 1: method and evaluation. Atmos. Chem. Phys. 18, 14327–14350 (2018).

    Google Scholar 

  48. Kahn, B. H., Gettelman, A., Fetzer, E. J., Eldering, A. & Liang, C. K. Cloudy and clear-sky relative humidity in the upper troposphere observed by the A-train. J. Geophys. Res. Atmos. 114, D00H02 (2009).

    Google Scholar 

  49. Diao, M., Zondlo, M. A., Heymsfield, A. J. & Beaton, S. P. Hemispheric comparison of cirrus cloud evolution using in situ measurements in HIAPER pole-to-pole observations. Geophys. Res. Lett. 41, 4090–4099 (2014).

    Google Scholar 

  50. Wofsy, S. C. et al. ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols (ORNL DAAC, 2018); https://doi.org/10.3334/ornldaac/1581

  51. Liu, J. et al. Spatial and temporal representativeness of ATom transects using GEOS-5 and GMI-CTM simulations. In 98th Ann. Meeting Amer. Meteor. Soc. 5B.2 (2018).

  52. Brock, C. A. et al. Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products. Atmos. Meas. Tech. 12, 3081–3099 (2019).

    Google Scholar 

  53. Williamson, C. et al. Fast time response measurements of particle size distributions in the 3–60 nm size range with the nucleation mode aerosol size spectrometer. Atmos. Meas. Tech. 11, 3491–3509 (2018).

    Google Scholar 

  54. Kupc, A., Williamson, C., Wagner, N. L., Richardson, M. & Brock, C. A. Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign. Atmos. Meas. Tech. 11, 369–383 (2018).

    Google Scholar 

  55. McNaughton, C. S. et al. Results from the DC-8 inlet characterization experiment (DICE): airborne versus surface sampling of mineral dust and sea salt aerosols. Aerosol Sci. Technol. 41, 136–159 (2007).

    Google Scholar 

  56. Thomson, D. S., Schein, M. E. & Murphy, D. M. Particle Analysis by Laser Mass Spectrometry WB-57F instrument overview. Aerosol Sci. Technol. 33, 153–169 (2000).

    Google Scholar 

  57. Murphy, D. M. et al. Single-particle mass spectrometry of tropospheric aerosol particles. J. Geophys. Res. Atmos. 111, D23S3 (2006).

    Google Scholar 

  58. Murphy, D. M., Middlebrook, A. M. & Warshawsky, M. Cluster analysis of data from the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Aerosol Sci. Technol. 37, 382–391 (2003).

    Google Scholar 

  59. Diskin, G. S., Podolske, J. R., Sachse, G. W. & Slate, T. A. Open-path airborne tunable diode laser hygrometer. Proc. SPIE 4817, 196 (2002).

    Google Scholar 

  60. Podolske, J. R. Calibration and data retrieval algorithms for the NASA Langley/Ames Diode Laser Hygrometer for the NASA Transport and Chemical Evolution Over the Pacific (TRACE-P) mission. J. Geophys. Res. 108, 8792 (2003).

    Google Scholar 

  61. Rollins, A. W. et al. Evaluation of UT/LS hygrometer accuracy by intercomparison during the NASA MACPEX mission. J. Geophys. Res. Atmos. 119, 1915–1935 (2014).

    Google Scholar 

  62. Chan, K. R., Dean-Day, J., Bowen, S. W. & Bui, T. P. Turbulence measurements by the DC-8 Meteorological Measurement System. Geophys. Res. Lett. 25, 1355–1358 (1998).

    Google Scholar 

  63. Bardeen, C. G., Toon, O. B., Jensen, E. J., Marsh, D. R. & Harvey, V. L. Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere. J. Geophys. Res. 113, D17202 (2008).

    Google Scholar 

  64. Toon, O. B., Turco, R. P., Westphal, D., Malone, R. & Liu, M. A multidimensional model for aerosols: description of computational analogs. J. Atmos. Sci. 45, 2123–2144 (1988).

    Google Scholar 

  65. Ginoux, P. et al. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. Atmos. 106, 20255–20273 (2001).

    Google Scholar 

  66. Su, L. & Toon, O. B. Numerical simulations of Asian dust storms using a coupled climate–aerosol microphysical model. J. Geophys. Res. 114, D14202 (2009).

    Google Scholar 

  67. Gillette, D. A. & Passi, R. Modeling dust emission caused by wind erosion. J. Geophys. Res. Atmos. 93, 14233–14242 (1988).

    Google Scholar 

  68. Creamean, J. M. et al. Colorado air quality impacted by long-range-transported aerosol: a set of case studies during the 2015 Pacific Northwest fires. Atmos. Chem. Phys. 16, 12329–12345 (2016).

    Google Scholar 

  69. Tobo, Y. et al. Glacially sourced dust as a potentially significant source of ice nucleating particles. Nat. Geosci. 12, 253–258 (2019).

    Google Scholar 

  70. Zhang, G. J. & McFarlane, N. A. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos. Ocean 33, 407–446 (1995).

    Google Scholar 

  71. Wang, H. et al. Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model. Geosci. Model Dev. 6, 765–782 (2013).

    Google Scholar 

  72. Grell, G. A. & Freitas, S. R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 14, 5233–5250 (2014).

    Google Scholar 

  73. Chin, M. et al. Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci. 59, 461–483 (2002).

    Google Scholar 

  74. Bian, H. et al. Investigation of global particulate nitrate from the AeroCom phase III experiment. Atmos. Chem. Phys. 17, 12911–12940 (2017).

    Google Scholar 

  75. Rienecker, M. M. et al. The GEOS‐5 Data Assimilation System: Documentation of Versions 5.0.1 and 5.1.0, and 5.2.0 (NASA, 2008).

  76. Bowman, K. P. Large-scale isentropic mixing properties of the Antarctic polar vortex from analyzed winds. J. Geophys. Res. Atmos. 98, 23013–23027 (1993).

    Google Scholar 

  77. Bowman, K. P. & Carrie, G. D. The mean-meridional transport circulation of the troposphere in an idealized GCM. J. Atmos. Sci. 59, 1502–1514 (2002).

    Google Scholar 

  78. Spichtinger, P. & Gierens, K. M. Modelling of cirrus clouds—part 1b: structuring cirrus clouds by dynamics. Atmos. Chem. Phys. 9, 707–719 (2009).

    Google Scholar 

  79. Jensen, E. J., Pfister, L. & Bui, T. P. Physical processes controlling ice concentrations in cold cirrus near the tropical tropopause. Geophys. Res. Atmos. 117, D111205 (2012).

    Google Scholar 

  80. Murphy, D. M. Rare temperature histories and cirrus ice number density in a parcel and a one-dimensional model. Atmos. Chem. Phys. 14, 13013–13022 (2014).

    Google Scholar 

  81. Jensen, E. J. et al. Physical processes controlling ice concentrations in synoptically forced, midlatitude cirrus. J. Geophys. Res. Atmos. 118, 5348–5360 (2013).

    Google Scholar 

  82. Jensen, E. & Pfister, L. Transport and freeze-drying in the tropical tropopause layer. J. Geophys. Res. 109, D02207 (2004).

    Google Scholar 

  83. Koop, T., Luo, B., Tsias, A. & Peter, T. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406, 611–614 (2000).

    Google Scholar 

  84. DeMott, P. J. Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols. Atmos. Res. 38, 63–99 (1995).

    Google Scholar 

  85. Cziczo, D. J. et al. Deactivation of ice nuclei due to atmospherically relevant surface coatings. Environ. Res. Lett. 4, 044013 (2009).

    Google Scholar 

  86. Sullivan, R. C. et al. Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmos. Chem. Phys. 10, 11471–11487 (2010).

    Google Scholar 

  87. DeMott, P. J., Rogers, D. C. & Kreidenweis, S. M. The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components. J. Geophys. Res. Atmos. 102, 19575–19584 (1997).

    Google Scholar 

  88. Kärcher, B., Hendricks, J. & Lohmann, U. Physically based parameterization of cirrus cloud formation for use in global atmospheric models. J. Geophys. Res. 111, D01205 (2006).

    Google Scholar 

  89. Podglajen, A., Hertzog, A., Plougonven, R. & Legras, B. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere. Geophys. Res. Lett. 43, 3543–3553 (2016).

    Google Scholar 

  90. Schoeberl, M. R. et al. Gravity wave spectra in the lower stratosphere diagnosed from project loon balloon trajectories. J. Geophys. Res. Atmos. 122, 8517–8524 (2017).

    Google Scholar 

Download references

Acknowledgements

We thank M. Dollner and B. Weinzierl for cloud particle measurements to exclude cloudy flight segments; M. Richardson, F. Erdesz and D. Thomson for technical support; and D. Cziczo for valuable input. The ATom mission was supported by NASA’s Earth System Science Pathfinder Program EVS-2 funding. Participation in the ATom mission by K.D.F., G.P.S., C.J.W., C.A.B., D.M.M. and E.R. was supported by NOAA climate funding and NASA award NNH15AB12I. P.Y. was supported by the second Tibetan Plateau Scientific Expedition and Research Program (STEP, 2019QZKK0604). The CESM project is supported partly by the National Science Foundation. A.K. was supported by the Austrian Science Fund’s Erwin Schrodinger Fellowship J-3613. GEOS development in the Global Modeling and Assimilation Office is funded by NASA’s Modeling, Analysis and Prediction (MAP) program. Resources supporting GEOS were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. H.B. was supported by NASA award NNX17AG31G. P.R.C. was supported by the MAP-funded Chemistry-Climate Modeling (CCM) project (600-17-6985).

Author information

Authors and Affiliations

Authors

Contributions

K.D.F. wrote the paper with contributions from all authors. K.D.F., G.P.S., C.A.B., A.K., C.J.W., D.M.M., G.S.D. and T.B. collected airborne data. P.Y. and K.H.R. provided CESM/CARMA model results. H.B., A.S.D. and P.R.C. provided GEOS model results. E.R. provided forward trajectory results. E.J.J. provided cirrus model results.

Corresponding author

Correspondence to Karl D. Froyd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Amato Evan, Trude Storelvmo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tom Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–13 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Froyd, K.D., Yu, P., Schill, G.P. et al. Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements. Nat. Geosci. 15, 177–183 (2022). https://doi.org/10.1038/s41561-022-00901-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00901-w

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing