Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pyrogenic carbon decomposition critical to resolving fire’s role in the Earth system

Abstract

Recently identified post-fire carbon fluxes indicate that, to understand whether global fires represent a net carbon source or sink, one must consider both terrestrial carbon retention through pyrogenic carbon production and carbon losses via multiple pathways. Here these legacy source and sink pathways are quantified using a CMIP6 land surface model to estimate Earth’s fire carbon budget. Over the period 1901–2010, global pyrogenic carbon has driven an annual soil carbon accumulation of 337 TgC yr−1, offset by legacy carbon losses totalling −248 TgC yr−1. The residual of these values constrains the maximum annual pyrogenic carbon mineralization to 89 TgC yr−1 and the pyrogenic carbon mean residence time to 5,387 years, assuming a steady state. The residual is negative over forests and positive over grassland-savannahs (implying a potential sink), suggesting contrasting roles of vegetation in the fire carbon cycle. The paucity of observational constraints for representing pyrogenic carbon mineralization means that, without assuming a steady state, we are unable to determine the sign of the overall fire carbon balance. Constraining pyrogenic carbon mineralization rates, particularly over grassland-savannahs, is a critical research frontier that would enable a fuller understanding of fire’s role in the Earth system and inform attendant land use and conservation policy.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Conceptual representation of the interrelation between plot or biome-scale vegetation, fire and PyC dynamics.
Fig. 2: Simulated PyC production and change over the period 1901–2010.
Fig. 3: Annual carbon fluxes of fire balance terms in equation (2).
Fig. 4: Global spatial distribution of the fire carbon balance.

Data availability

The data for figure reconstruction in addition to data for tropical post drought-fire mortality and pyrogenic production and aquatic export are available online as source data and Supplementary Information, respectively, and are also deposited in the Zenodo digital repository (https://www.zenodo.org; https://doi.org/10.5281/zenodo.5789942), which is managed by the European Organization For Nuclear Research (CERN) and OpenAIRE. Owing to file size limitations we are unable to deposit primary data (model output) online. These are archived on the Obelix cluster and the repository managed by LSCE/IPSL, which can be made available upon request by contacting the corresponding author. Source data are provided with this paper.

Code availability

The source code for this version of ORCHIDEE-MICT is available via https://forge.ipsl.jussieu.fr/orchidee/wiki/GroupActivities/CodeAvalaibilityPublication/ORCHIDEE_Biochar (https://doi.org/10.14768/054193dc-a5b0-4a51-bd11-3812e8f12307; Bowring 2021). Please follow the online instructions for accessing the code. We suggest that interested parties contact the corresponding author for latest code versions containing bug fixes, improvements or cleaner code. This software is governed by a CeCILL licence under French law and abiding by the rules of the distribution of free software. You can use, modify and/or redistribute the software under the terms of the CeCILL licence as circulated by CEA, CNRS and INRIA at the following URL: http://www.cecill.info (last accessed 20 November 2021).

References

  1. Van Marle, M. J. E. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).

    Google Scholar 

  2. Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    Google Scholar 

  3. Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Google Scholar 

  4. Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Google Scholar 

  5. Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–485 (2009).

    Google Scholar 

  6. Archibald, S. et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 13, 033003 (2018).

    Google Scholar 

  7. Mills, B. J. W., Belcher, C. M., Lenton, T. M. & Newton, R. J. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 44, 1023–1026 (2016).

    Google Scholar 

  8. Lenton, T. M. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed. Belcher, C. M.) 298–308 (Wiley, 2013).

  9. Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).

    Google Scholar 

  10. Marlon, J. R. et al. Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons. Biogeosciences 13, 3225–3244 (2016).

    Google Scholar 

  11. Archibald, S., Staver, A. C. & Levin, S. A. Evolution of human-driven fire regimes in Africa.Proc. Natl Acad. Sci. USA 109, 847–852 (2012).

    Google Scholar 

  12. Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biol. 22, 76–91 (2016).

    Google Scholar 

  13. Jones, M. W., Santín, C., van der Werf, G. R. & Doerr, S. H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 12, 742–747 (2019).

    Google Scholar 

  14. Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M. & McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 43, 273–298 (2015).

    Google Scholar 

  15. Hammes, K. & Abiven, S. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed. Belcher, C. M.) 157–176 (Wiley, 2013).

  16. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Google Scholar 

  17. Lavallee, J. M. et al. Selective preservation of pyrogenic carbon across soil organic matter fractions and its influence on calculations of carbon mean residence times. Geoderma 354, 113866 (2019).

    Google Scholar 

  18. Coppola, A. I. et al. Global-scale evidence for the refractory nature of riverine black carbon. Nat. Geosci. 11, 584–588 (2018).

    Google Scholar 

  19. Kuzyakov, Y., Bogomolova, I. & Glaser, B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 70, 229–236 (2014).

    Google Scholar 

  20. Singh, B. P., Cowie, A. L. & Smernik, R. J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol. 46, 11770–11778 (2012).

    Google Scholar 

  21. Masiello, C. A. & Druffel, E. R. M. Black carbon in deep-sea sediments. Science 280, 1911–1913 (1998).

    Google Scholar 

  22. Santos, F., Torn, M. S. & Bird, J. A. Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2012.04.005 (2012).

  23. Zimmermann, M. et al. Rapid degradation of pyrogenic carbon. Glob. Change Biol. 18, 3306–3316 (2012).

    Google Scholar 

  24. Jones, M. W. et al. Fires prime terrestrial organic carbon for riverine export to the global oceans. Nat. Commun. 11, 2791 (2020).

    Google Scholar 

  25. Qi, Y. et al. Dissolved black carbon is not likely a significant refractory organic carbon pool in rivers and oceans. Nat. Commun. 11, 5051 (2020).

    Google Scholar 

  26. Pausas, J. G. & Paula, S. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Glob. Ecol. Biogeogr. 21, 1074–1082 (2012).

    Google Scholar 

  27. Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).

    Google Scholar 

  28. Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate-fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).

    Google Scholar 

  29. Brando, P. M. et al. Prolonged tropical forest degradation due to compounding disturbances: implications for CO2 and H2O fluxes. Glob. Change Biol. 25, 2855–2868 (2019).

    Google Scholar 

  30. Silva, C. V. J. et al. Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Phil. Trans. R. Soc. B 373, 20180043 (2018).

    Google Scholar 

  31. Withey, K. et al. Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Phil. Trans. R. Soc. B 373, 20170312 (2018).

    Google Scholar 

  32. Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).

    Google Scholar 

  33. Reisser, M., Purves, R. S., Schmidt, M. W. I. & Abiven, S. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks.Front. Earth Sci. 4, 80 (2016).

    Google Scholar 

  34. Wei, X., Hayes, D. J., Fraver, S. & Chen, G. Global pyrogenic carbon production during recent decades has created the potential for a large, long-term sink of atmospheric CO2. J. Geophys. Res. Biogeosci. 123, 3682–3696 (2018).

    Google Scholar 

  35. Guimberteau, M. et al. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation. Geosci. Model Dev. 11, 121–163 (2018).

    Google Scholar 

  36. Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7, 1991–2011 (2010).

    Google Scholar 

  37. Yue, C. et al. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—Part 1: simulating historical global burned area and fire regimes. Geosci. Model Dev. 7, 2747–2767 (2014).

    Google Scholar 

  38. Abiven, S. & Santín, C. Editorial: From fires to oceans: dynamics of fire-derived organic matter in terrestrial and aquatic ecosystems. Front. Earth Sci 7, 31 (2019).

    Google Scholar 

  39. Santín, C., Doerr, S. H., Preston, C. M. & González-Rodríguez, G. Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Glob. Change Biol. 21, 1621–1633 (2015).

    Google Scholar 

  40. Santín, C. et al. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Sci. Rep. 7, 11233 (2017).

    Google Scholar 

  41. Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    Google Scholar 

  42. Arora, V. K. & Melton, J. R. Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nat. Commun. 9, 1326 (2018).

    Google Scholar 

  43. Mouillot, F. & Field, C. B. Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Global Change Biol. 11, 398–420 (2005).

    Google Scholar 

  44. Gibson, D. Grasses and Grassland Ecology. Annals of Botany (Oxford Univ. Press, 2009).

  45. Dixon, A. P., Faber-Langendoen, D., Josse, C., Morrison, J. & Loucks, C. J. Distribution mapping of world grassland types. J. Biogeogr. 41, 2003–2019 (2014).

    Google Scholar 

  46. Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).

    Google Scholar 

  47. Retallack, G. J. Global cooling by grassland soils of the geological past and near future. Annu. Rev. Earth Planet. Sci. 41, 69–86 (2013).

    Google Scholar 

  48. Leys, B. A., Marlon, J. R., Umbanhowar, C. & Vannière, B. Global fire history of grassland biomes. Ecol. Evol. 8, 8831–8852 (2018).

    Google Scholar 

  49. Alvarado, S. T., Andela, N., Silva, T. S. F. & Archibald, S. Thresholds of fire response to moisture and fuel load differ between tropical savannas and grasslands across continents. Glob. Ecol. Biogeogr. 29, 331–344 (2020).

    Google Scholar 

  50. Buisson, E. et al. Resilience and restoration of tropical and subtropical grasslands, savannas and grassy woodlands. Biol. Rev. 94, 590–609 (2019).

    Google Scholar 

  51. Rodionov, A. et al. Black carbon in grassland ecosystems of the world. Glob. Biogeochem. Cycles 24, GB3013 (2010).

    Google Scholar 

  52. Haberl, H., Erb, K. H. & Krausmann, F. Human appropriation of net primary production: patterns, trends and planetary boundaries. Annu. Rev. Environ. Resources 39, 363–391 (2014).

    Google Scholar 

  53. Medan, D., Torretta, J. P., Hodara, K., de la Fuente, E. B. & Montaldo, N. H. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers. Conserv. 20, 3077–3100 (2011).

    Google Scholar 

  54. González-Roglich, M., Swenson, J. J., Villarreal, D., Jobbágy, E. G. & Jackson, R. B. Woody plant-cover dynamics in Argentine savannas from the 1880s to 2000s: the interplay of encroachment and agriculture conversion at varying scales. Ecosystems 18, 481–492 (2015).

    Google Scholar 

  55. Satir, O. & Erdogan, M. A. Monitoring the land use/cover changes and habitat quality using Landsat dataset and landscape metrics under the immigration effect in subalpine eastern Turkey. Environ. Earth Sci. 75, 1118 (2016).

    Google Scholar 

  56. Şekercioĝlu, Ç. H. et al. Turkey’s globally important biodiversity in crisis. Biol. Conserv. 144, 2752–2769 (2011).

    Google Scholar 

  57. Schierhorn, F. et al. Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine and Belarus. Glob. Biogeochem. Cycles 27, 1175–1185 (2013).

    Google Scholar 

  58. Jaglan, M. S. & Qureshi, M. H. Irrigation development and its environmental consequences in arid regions of India. Environ. Manage. 20, 323–336 (1996).

    Google Scholar 

  59. Joshi, A. A., Sankaran, M. & Ratnam, J. ‘Foresting’ the grassland: historical management legacies in forest-grassland mosaics in southern India, and lessons for the conservation of tropical grassy biomes. Biol. Conserv. 224, 144–152 (2018).

    Google Scholar 

  60. Huang, F., Wang, P. & Zhang, J. Grasslands changes in the Northern Songnen Plain, China during 1954–2000. Environ. Monit. Assess. 184, 2161–2175 (2012).

    Google Scholar 

  61. Zhou, Y., Hartemink, A. E., Shi, Z., Liang, Z. & Lu, Y. Land use and climate change effects on soil organic carbon in north and northeast China. Sci. Total Environ. 647, 1230–1238 (2019).

    Google Scholar 

  62. Williams, N. S. G. Environmental, landscape and social predictors of native grassland loss in western Victoria, Australia. Biol. Conserv. 137, 308–318 (2007).

    Google Scholar 

  63. Dowling, P. M. et al. Effect of continuous and time-control grazing on grassland components in south-eastern Australia. Aust. J. Exp. Agric. 45, 369–382 (2005).

    Google Scholar 

  64. DeLuca, T. H. & Zabinski, C. A. Prairie ecosystems and the carbon problem. Front. Ecol. Environ. 9, 407–413 (2011).

    Google Scholar 

  65. Ceballos, G. et al. Rapid decline of a grassland system and its ecological and conservation implications. PLoS ONE 5, e8562 (2010).

    Google Scholar 

  66. Haugo, R. et al. A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA. For. Ecol. Manage. https://doi.org/10.1016/j.foreco.2014.09.014 (2015).

  67. DeLuca, T. H. & Aplet, G. H. Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front. Ecol. Environ. 6, 18–24 (2008).

    Google Scholar 

  68. Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    Google Scholar 

  69. Bellè, S. L. et al. Key drivers of pyrogenic carbon redistribution during a simulated rainfall event. Biogeosciences 18, 1105–1126 (2021).

    Google Scholar 

  70. Abney, R. B., Jin, L. & Berhe, A. A. Soil properties and combustion temperature: controls on the decomposition rate of pyrogenic organic matter. Catena 182, 104127 (2019).

    Google Scholar 

  71. Bradstock, R. A., Hammill, K. A., Collins, L. & Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 25, 607–619 (2010).

    Google Scholar 

  72. Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).

    Google Scholar 

  73. Coppola, A. I. & Druffel, E. R. M. Cycling of black carbon in the ocean. Geophys. Res. Lett. 43, 4477–4482 (2016).

    Google Scholar 

  74. Stenzel, J. E. et al. Fixing a snag in carbon emissions estimates from wildfires. Glob. Change Biol. 25, 3985–3994 (2019).

    Google Scholar 

  75. Murphy, B. P., Prior, L. D., Cochrane, M. A., Williamson, G. J. & Bowman, D. M. J. S. Biomass consumption by surface fires across Earth’s most fire prone continent. Glob. Change Biol. 25, 254–268 (2019).

    Google Scholar 

  76. Brando, P. M. et al. Droughts, wildfires and forest carbon cycling: a pantropical synthesis. Annu. Rev. Earth Planet. Sci. 47, 555–581 (2019).

    Google Scholar 

  77. Appezzato-da-Glória, B., Cury, G., Soares, M. K. M., Rocha, R. & Hayashi, A. H. Underground systems of Asteraceae species from the Brazilian Cerrado. J. Torrey Bot. Soc. 135, 103–113 (2008).

    Google Scholar 

  78. Belcher, C. M. et al. The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen. Nat. Commun. 12, 503 (2021).

    Google Scholar 

  79. Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A. & Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildl. Fire 24, 892–899 (2015).

    Google Scholar 

  80. Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2013).

    Google Scholar 

  81. Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Google Scholar 

  82. Prein, A. F. et al. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7, 48–52 (2017).

    Google Scholar 

  83. Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

    Google Scholar 

  84. Silveira, F. A. O. et al. Myth-busting tropical grassy biome restoration. Restor. Ecol. 28, 1067–1073 (2020).

    Google Scholar 

  85. Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    Google Scholar 

  86. Schmidt, H. P. et al. Pyrogenic carbon capture and storage. GCB Bioenergy 11, 573–591 (2019).

    Google Scholar 

  87. Fu, Z. et al. Recovery time and state change of terrestrial carbon cycle after disturbance. Environ. Res. Lett. 12, 104004 (2017).

    Google Scholar 

  88. Zhu, D. et al. Improving the dynamics of Northern Hemisphere high-latitude vegetation in the ORCHIDEE ecosystem model. Geosci. Model Dev. 8, 2263–2283 (2015).

    Google Scholar 

  89. Zhu, D. et al. Simulating soil organic carbon in Yedoma deposits during the Last Glacial Maximum in a land surface model. Geophys. Res. Lett. 43, 5133–5142 (2016).

    Google Scholar 

  90. Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).

    Google Scholar 

  91. Yue, C., Ciais, P., Cadule, P., Thonicke, K. & Van Leeuwen, T. T. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—Part 2: carbon emissions and the role of fires in the global carbon balance. Geosci. Model Dev. 8, 1321–1338 (2015).

    Google Scholar 

  92. Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).

    Google Scholar 

  93. Hantson, S. et al. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geosci. Model Dev. 13, 3299–3318 (2020).

    Google Scholar 

  94. Li, F. et al. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 19, 12545–12567 (2019).

    Google Scholar 

  95. Forkel, M. et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 16, 57–76 (2019).

    Google Scholar 

  96. Parton, W. J., Stewart, J. W. B. & Cole, C. V. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5, 109–131 (1988).

    Google Scholar 

  97. Singh, N. et al. Transformation and stabilization of pyrogenic organic matter in a temperate forest field experiment. Glob. Change Biol. 20, 1629–1642 (2014).

    Google Scholar 

  98. Viovy, N. CRUNCEP Version 7—Atmospheric Forcing Data for the Community Land Model (Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, 2018); https://doi.org/10.5065/PZ8F-F017

  99. Mckee, T. B. T. et al. The relationship of drought frequency and duration to time scales. In Proc. Eighth Conference on Applied Climatology 179–184 (American Meteorological Society, 1993).

  100. The NCAR Command Language, Version 6.6.2 (UCAR/NCAR/CISL/TDD, 2019).

  101. Freeborn, P. H., Wooster, M. J., Roy, D. P. & Cochrane, M. A. Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite-based active fire characterization and biomass burning estimation. Geophys. Res. Lett. 41, 1988–1994 (2014).

    Google Scholar 

  102. Giglio, L. MODIS Collection 5 Active Fire Product User’s Guide Version 2.5 (Science Systems and Applications, 2013).

  103. Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).

    Google Scholar 

  104. Warner, D. L., Bond-Lamberty, B., Jian, J., Stell, E. & Vargas, R. Spatial predictions and associated uncertainty of annual soil respiration at the global scale. Glob. Biogeochem. Cycles 33, 1733–1745 (2019).

    Google Scholar 

Download references

Acknowledgements

S.P.K.B. was supported by Swiss National Science Foundation (SNSF) grant no. SNSF 649 200021–178768 and would like to thank C. Yue, J. Chang and R. Lauerwald for discussions relating to ORCHIDEE modifications. M.W.J. was supported by the European Commission Horizon 2020 project VERIFY (grant no. 776810). P.C. was co-funded by the European Space Agency Climate Change Initiative ESA-CCI RECCAP2 project 1190 (ESRIN/ 4000123002/18/I-NB).

Author information

Authors and Affiliations

Authors

Contributions

S.P.K.B. and S.A. designed the study. S.P.K.B. performed the code implementation in ORCHIDEE, set up the simulations and processed the output used for this study. M.W.J. provided access to data and insight into the PyC production factors used in the simulations. P.C. and B.G. provided additional input to the coding, study design and data processing. All authors contributed to the interpretation of the results. S.P.K.B. wrote the manuscript and produced the figures, M.W.J. made substantial additions to the text. All authors contributed to final modifications of the manuscript.

Corresponding author

Correspondence to Simon P. K. Bowring.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks David Bowman, Kirsten Thonicke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Xujia Jiang and Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Discussion, Tables 1–8 and references.

Supplementary Data

Additional output data.

Source data

Source Data Fig. 2

Tabulated source data.

Source Data Fig. 3

Tabulated source data.

Source Data Fig. 4

Tabulated source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bowring, S.P.K., Jones, M.W., Ciais, P. et al. Pyrogenic carbon decomposition critical to resolving fire’s role in the Earth system. Nat. Geosci. 15, 135–142 (2022). https://doi.org/10.1038/s41561-021-00892-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00892-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing