Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of ionospheric plasma velocities by thermospheric winds

Abstract

Earth’s equatorial ionosphere exhibits substantial and unpredictable day-to-day variations in density and morphology. This presents challenges in preparing for adverse impacts on geopositioning systems and radio communications even 24 hours in advance. The variability is now theoretically understood as a manifestation of thermospheric weather, where winds in the upper atmosphere respond strongly to a spectrum of atmospheric waves that propagate into space from the lower and middle atmosphere. First-principles simulations predict related, large changes in the ionosphere, primarily through modification of wind-driven electromotive forces: the wind-driven dynamo. Here we show the first direct evidence of the action of a wind dynamo in space, using the coordinated, space-based observations of winds and plasma motion made by the National Aeronautics and Space Administration Ionospheric Connection Explorer. A clear relationship is found between vertical plasma velocities measured at the magnetic equator near 600 km and the thermospheric winds much farther below. Significant correlations are found between the plasma and wind velocities during several successive precession cycles of the Ionospheric Connection Explorer’s orbit. Prediction of thermospheric winds in the 100–150 km altitude range emerges as the key to improved prediction of Earth’s plasma environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ICON’s unique orbit and observational geometry support simultaneous observation of lower thermospheric winds and ionospheric plasma velocities.
Fig. 2: Predicted and observed meridional drifts in three successive measurement periods in early 2020.
Fig. 3: Each of the four terms in the vpred drift calculation.
Fig. 4: Key properties of the equatorial ionosphere and apex coordinate system.

Similar content being viewed by others

Data availability

Data collected by the Ionospheric Connection Explorer are available at https://icon.ssl.berkeley.edu/Data and are archived at the NASA Space Physics Data Facility at https://spdf.gsfc.nasa.gov. Source data are provided with this paper.

References

  1. Immel, T. J. et al. The Ionospheric Connection Explorer mission: mission goals and design. Space Sci. Rev. 214, 13 (2018).

    Article  Google Scholar 

  2. Yonezawa, T. Theory of the formation of the ionosphere. Space Sci. Rev. 5, 3–56 (1966).

    Article  Google Scholar 

  3. Eccles, J. V., St. Maurice, J. P. & Schunk, R. W. Mechanisms underlying the prereversal enhancement of the vertical plasma drift in the low-latitude ionosphere. J. Geophys. Res. 120, 4950–4970 (2015).

    Article  Google Scholar 

  4. Komjathy, A., Sparks, L., Mannucci, A. & Pi, X. An assessment of the current WAAS ionospheric correction algorithm in the South American region. NAVIGATION 50, 193–204 (2003).

    Article  Google Scholar 

  5. Richmond, A. D., Matsushita, S. & Tarpley, J. D. On the production mechanism of electric currents and fields in the ionosphere. J. Geophys. Res. 81, 547–555 (1976).

    Article  Google Scholar 

  6. Pfaff, R. et al. Daytime dynamo electrodynamics with spiral currents driven by strong winds revealed by vapor trails and sounding rocket probes. Geophys. Res. Lett. 47, e2020GL088803 (2020).

    Article  Google Scholar 

  7. Hines, C. O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 38, 1441–1481 (1960).

    Article  Google Scholar 

  8. Hines, C. O. Diurnal tide in the upper atmosphere. J. Geophys. Res. 71, 1453–1459 (1966).

    Article  Google Scholar 

  9. Forbes, J. M. & Lindzen, R. S. Atmospheric solar tides and their electrodynamic effects. I - The global Sq current system. II - The equatorial electrojet. J. Atmos. Terr. Phys. 38, 897–920 (1976).

    Article  Google Scholar 

  10. Hagan, M. E., Roble, R. G. & Hackney, J. Migrating thermospheric tides. J. Geophys. Res. 106, 12739–12752 (2001).

    Article  Google Scholar 

  11. Hagan, M. E. & Forbes, J. M. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. Atmos. 107, 6-1–6-15 (2002).

    Article  Google Scholar 

  12. Millward, G. H. et al. An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J. Geophys. Res. 106, 24733–24744 (2001).

    Article  Google Scholar 

  13. Immel, T. J. et al. The control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33, L15108 (2006).

    Article  Google Scholar 

  14. England, S. L. et al. Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly. J. Geophys. Res. 111, A10S19 (2006).

    Google Scholar 

  15. Lin, C. H. et al. Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: three-dimensional electron density structures. Geophys. Res. Lett. 34, L11112 (2007).

    Article  Google Scholar 

  16. Forbes, J. M. et al. Tidal variability in the ionospheric dynamo region. J. Geophys. Res. 113, A02310 (2008).

    Google Scholar 

  17. Jin, H., Miyoshi, Y., Fujiwara, H. & Shinagawa, H. Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure. J. Geophys. Res. 113, 9307 (2008).

    Google Scholar 

  18. Chang, L. C., Palo, S. E. & Liu, H.-L. Short-term variability in the migrating diurnal tide caused by interactions with the quasi 2 day wave. J. Geophys. Res. 116, D12112 (2011).

    Article  Google Scholar 

  19. England, S. L. A review of the effects of non-migrating atmospheric tides on the Earth’s low-latitude ionosphere. Space Sci. Rev. 168, 211–236 (2012).

    Article  Google Scholar 

  20. Wan, W. et al. A simulation study for the couplings between DE3 tide and longitudinal WN4 structure in the thermosphere and ionosphere. J. Atmos. Sol. Terr. Phys. 90–91, 52–60 (2012).

    Article  Google Scholar 

  21. Liu, H. L. Variability and predictability of the space environment as related to lower atmosphere forcing. Space Weather 14, 634–658 (2016).

    Article  Google Scholar 

  22. Pedatella, N. M. & Liu, H. L. The influence of internal atmospheric variability on the ionosphere response to a geomagnetic storm. Geophys. Res. Lett. 45, 4578–4585 (2018).

    Article  Google Scholar 

  23. Liu, H.-L. Day-to-day variability of prereversal enhancement in the vertical ion drift in response to large-scale forcing from the lower atmosphere. Space Weather 18, e02334 (2020).

    Article  Google Scholar 

  24. Englert, C. R. et al. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): instrument design and calibration. Space Sci. Rev. 212, 553–584 (2017).

    Article  Google Scholar 

  25. Harding, B. J. et al. The MIGHTI wind retrieval algorithm: description and verification. Space Sci. Rev. 212, 585–600 (2017).

    Article  Google Scholar 

  26. Heelis, R. A. et al. Ion velocity measurements for the Ionospheric Connections Explorer. Space Sci. Rev. 212, 615–629 (2017).

    Article  Google Scholar 

  27. Stening, R. J. Calculation of electric currents in the ionosphere by an equivalent circuit method. Planet. Space Sci. 16, 717–728 (1968).

    Article  Google Scholar 

  28. Stening, R. J. An assessment of the contributions of various tidal winds to the Sq current system. Planet. Space Sci. 17, 889–908 (1969).

    Article  Google Scholar 

  29. Richmond, A. D. Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr. 47, 191–212 (1995).

    Article  Google Scholar 

  30. Thébault, E. et al. Evaluation of candidate geomagnetic field models for IGRF-12. Earth Planets Space 67, 112 (2015).

    Article  Google Scholar 

  31. Bilitza, D. IRI the international standard for the ionosphere. Adv. Radio Sci. 16, 1–11 (2018).

    Article  Google Scholar 

  32. Picone, J. M., Hedin, A. E., Drob, D. P. & Aikin, A. C. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107, 15-1–15-16 (2002).

    Article  Google Scholar 

  33. Kil, H. et al. Longitudinal structure of the vertical E × B drift and ion density seen from ROCSAT-1. Geophys. Res. Lett. 34, SA11B–04 (2007).

    Article  Google Scholar 

  34. Oberheide, J., Forbes, J. M., Zhang, X. & Bruinsma, S. L. Climatology of upward propagating diurnal and semidiurnal tides in the thermosphere. J. Geophys. Res. 116, A11306 (2011).

    Google Scholar 

  35. Gasperini, F., Forbes, J. M., Doornbos, E. N. & Bruinsma, S. L. Kelvin wave coupling from TIMED and GOCE: inter/intra-annual variability and solar activity effects. J. Atmos. Sol. Terr. Phys. 171, 176–187 (2018).

    Article  Google Scholar 

  36. Friis-Christensen, E., Lühr, H., Knudsen, D. & Haagmans, R. Swarm – an Earth observation mission investigating geospace. Adv. Space Res. 41, 210–216 (2008).

    Article  Google Scholar 

  37. Lühr, H. et al. The interhemispheric and F region dynamo currents revisited with the Swarm constellation. Geophys. Res. Lett. 42, 3069–3075 (2015).

    Article  Google Scholar 

  38. Pedatella, N. M., Liu, H. L., Marsh, D. R., Raeder, K. & Anderson, J. L. Error growth in the mesosphere and lower thermosphere based on hindcast experiments in a whole atmosphere model. Space Weather 17, 1442–1460 (2019).

    Article  Google Scholar 

  39. Pedatella, N. M., Forbes, J. M. & Richmond, A. D. Seasonal and longitudinal variations of the solar quiet (Sq) current system during solar minimum determined by CHAMP satellite magnetic field observations. J. Geophys. Res. Space Phys. 116, A04317 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the ICON engineering and operations teams for their outstanding performance during regional wildfires, power outages and a global pandemic to launch ICON and collect its data. ICON data are processed in the ICON data centre at UC Berkeley and available through its website (https://icon.ssl.berkeley.edu) and at the NASA Space Physics Data Facility (https://spdf.gsfc.nasa.gov/). No proprietary codes or algorithms were used to analyse the data used for this report. A.M. is supported by NASA grant NNX14AP03G. All other authors’ efforts are supported by NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I.

Author information

Authors and Affiliations

Authors

Contributions

T.J.I. and B.J.H. contributed equally to the writing of this manuscript. T.J.I., B.J.H., R.A.H., A.M., J.M.F., S.B.M. and S.L.E. developed the Methods section. B.J.H. performed the data analysis and created Figs. 1–3. S.B.M. and T.J.I. created Fig. 4. R.A.H., C.R.E., R.A.S., K.M., J.M.H., J.J.M. and B.J.H. were responsible for the data products.

Corresponding author

Correspondence to Thomas J. Immel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Tom Richardson, Kyle Frischkorn.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Immel, T.J., Harding, B.J., Heelis, R.A. et al. Regulation of ionospheric plasma velocities by thermospheric winds. Nat. Geosci. 14, 893–898 (2021). https://doi.org/10.1038/s41561-021-00848-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00848-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing