Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Minimizing trade-offs for sustainable irrigation

A more comprehensive understanding of the role of irrigation in coupled natural–human systems is needed to minimize the negative consequences for climate, ecosystems and public health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Environmental and public health trade-offs of modern irrigation.

References

  1. Siebert, S. & Döll, P. J. Hydrol. 384, 198–217 (2010).

    Article  Google Scholar 

  2. Davidson, N. C. in The Wetland Book (eds Finlayson, C.M. et al.) https://doi.org/10.1007/978-94-007-6173-5_197-1 (Springer, 2016).

  3. Micklin, P. Environ. Earth Sci. 75 (2016).

  4. Evans, A. E., Mateo-Sagasta, J., Qadir, M., Boelee, E. & Ippolito, A. Curr. Opin. Environ. Sustain. 36, 20–27 (2019).

    Article  Google Scholar 

  5. Kanter, D. R., Chodos, O., Nordland, O., Rutigliano, M. & Winiwarter, W. Nat. Sustain. 3, 956–963 (2020).

    Article  Google Scholar 

  6. Vushe, A. in Climate Change Management (eds Bamutaze, Y. et al.) 99–128 (Springer, 2019); https://doi.org/10.1007/978-3-030-12974-3_5

  7. Singh, A. Ecol. Indic. 57, 128–130 (2015).

    Article  Google Scholar 

  8. Vercauteren, K. & Hygnstrom, S. E. in Biology and Management of White-Tailed Deer (ed. Hewitt, D. G.) 501–535 (CRC Press, 2011); http://digitalcommons.unl.edu/natrespapers/380

  9. Zhang, T., Mahmood, R., Lin, X. & Pielke, R. A. Weather Clim. Extrem. 23, 100197 (2019).

    Article  Google Scholar 

  10. Nocco, M. A., Smail, R. A. & Kucharik, C. J. Glob. Change Biol. 25, 3472–3484 (2019).

    Article  Google Scholar 

  11. de Vrese, P. & Stacke, T. Clim. Dyn. 55, 1521–1537 (2020).

    Article  Google Scholar 

  12. Pei, L. et al. J. Clim. 29, 3541–3558 (2016).

    Article  Google Scholar 

  13. Cook, B. I. et al. J. Geophys. Res. Atmos. 125, https://doi.org/10.1029/2019JD031814 (2020).

  14. Sarofim, M.C. et al. (eds) Ch. 2: Temperature-related death and illness (US Global Change Research Program, Washington, DC., 2016); https://health2016.globalchange.gov/downloads#temperature-related-death-and-illness

  15. Mishra, V. et al. Nat. Geosci. 13, 722–728 (2020).

    Article  Google Scholar 

  16. Szilagyi, J. & Franz, T. E. Sustain. Water Resour. Manag. 6, https://doi.org/10.1007/s40899-020-00368-w (2020).

  17. Levia, D. F. et al. Nat. Geosci. 13, 656–658 (2020).

    Article  Google Scholar 

  18. Strum, K. M. et al. Agric. Ecosyst. Environ. 179, 116–124 (2013).

    Article  Google Scholar 

  19. Devanand, A., Huang, M., Ashfaq, M., Barik, B. & Ghosh, S. Geophys. Res. Lett. 46 (2019).

  20. Rosa, L. et al. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).

    Article  Google Scholar 

  21. Pastor, A., Biemans, H. & Gerten, D. Nat. Commun. 8 (2017).

  22. MacDonald, A. M. et al. Environ. Res. Lett. 16, https://doi.org/10.1088/1748-9326/abd661 (2021).

  23. Davis, K. F. et al. Sci. Adv. 4, eaao1108 (2018).

    Article  Google Scholar 

  24. Gleeson, T. et al. One Earth. 2, 223–234 (2020).

    Article  Google Scholar 

  25. Scheierling, S. M. & Tréguer, D. O. Beyond Crop per Drop: Assessing Agricultural Water Productivity and Efficiency in a Maturing Water Economy (International Bank for Reconstruction and Development / The World Bank, 2018) https://documents1.worldbank.org/curated/en/352321530075399351/pdf/127625-PUB-Date-6-28-2018-PUBLIC-Beyond-Crop-per-Drop.pdf

  26. Mishra, V., Asoka, A., Vatta, K. & Lall, U. Earths Future 6, 1672–1681 (2018).

    Article  Google Scholar 

  27. Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Nature 488, 197–200 (2012).

    Article  Google Scholar 

  28. State of Indian Agriculture (Government of India, 2013); http://agricoop.nic.in/sia111213312.pdf

  29. Rahman, M. A. & Hasegawa, H. Sci. Total Environ. 409, 4645–4655 (2011).

    Article  Google Scholar 

  30. Singh, D. et al. Journal of Geophysical Research: Atmospheres, 123 (2018).

  31. Wada, Y. et al. One Earth. 1, 185–194 (2019).

    Article  Google Scholar 

  32. Ambika, A.K., Wardlow, B. & Mishra, V. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Sci. Data, 3 (2016).

Download references

Acknowledgements

R.M. acknowledges support from the National Science Foundation (AGS-1853390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonali Shukla McDermid.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDermid, S.S., Mahmood, R., Hayes, M.J. et al. Minimizing trade-offs for sustainable irrigation. Nat. Geosci. 14, 706–709 (2021). https://doi.org/10.1038/s41561-021-00830-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00830-0

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene