Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Explosive or effusive style of volcanic eruption determined by magma storage conditions

Abstract

Most volcanoes erupt both effusively and explosively, with explosive behaviour being responsible for most human fatalities. Eruption style is thought to be strongly controlled by fast conduit processes, limiting our ability for prediction. Here we address a critical question in the quest to develop timely forecasting of eruptive behaviour: are there conditions in which the outcome of an eruption is predetermined by the state of the magma in the subvolcanic reservoir? We analyse the pre-eruptive storage conditions of 245 units from volcanoes around the world. We show that pre-eruptive crystallinity, dissolved water content and the presence of exsolved volatiles in the chamber exert a primary control on eruptive styles. Magmas erupt explosively over a well-defined range in dissolved water content (~4–5.5 wt%) and crystallinity (less than 30 vol%). All other conditions, namely higher crystallinity, dissolved water contents below 3.5 wt% and, counterintuitively, in excess of 5.5 wt%, favour effusive activity. Between these ranges, there is a narrow field of transitional storage properties that do not discriminate between eruptive styles, and where the conduit exerts the main control on eruptive behaviour. Our findings suggest that better estimates of crystallinity and water content in subvolcanic chambers are key to forecasting eruptive style.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: World map showing the location of the volcanoes considered in this study.
Fig. 2: Plot depicting the increase in the volume of exsolved volatiles (CO2 + H2O) with crystallization.
Fig. 3: Correlation of eruptive styles with crystallinity, dissolved H2O and water saturation.
Fig. 4: The distribution of crystallinity and storage temperatures with eruptive behaviours.
Fig. 5: Response of reservoirs containing water-saturated and water-undersaturated magmas to recharge events.

Data availability

The excel source file containing the geochemical and petrological data the meta-analysis is based on can be retrieved from the EarthChem data repository, at https://doi.org/10.26022/IEDA/112061, under the title ‘Global overview of pre-eruptive magma chamber conditions’60. The source files containing the results of the numerical simulations61 can be retrieved from EarthChem, at https://doi.org/10.26022/IEDA/112064. Source data are provided with this paper.

References

  1. Brown, S. K., Jenkins, S. F., Sparks, R. S. J., Odbert, H. & Auker, M. R. Volcanic fatalities database: analysis of volcanic threats with distance and victim classification. J. Appl. Volcanol. 6, 15 (2017).

    Article  Google Scholar 

  2. Cassidy, M., Manga, M., Cashman, K. & Bachmann, O. Controls on explosive-effusive volcanic eruption styles. Nat. Commun. 9, 2839 (2018).

    Article  Google Scholar 

  3. Gonnermann, H. M. & Manga, M. The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39, 321–356 (2007).

    Article  Google Scholar 

  4. Eichelberger, J. C., Carrigan, C. R., Westrich, H. R. & Price, R. H. Non-explosive silicic volcanism. Nature 323, 598–602 (1986).

    Article  Google Scholar 

  5. Papale, P. Dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and nonequilibrium pumice degassing. J. Geophys. Res. Solid Earth 106, 11043–11065 (2001).

    Article  Google Scholar 

  6. Ripepe, M. et al. Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geology 33, 341–344 (2005).

    Article  Google Scholar 

  7. Melnik, O., Barmin, A. A. & Sparks, R. S. J. Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma. J. Volcanol. Geotherm. Res. 143, 53–68 (2005).

    Article  Google Scholar 

  8. Adams, N. K., Houghton, B. F. & Fagents, S. A. The transition from explosive to effusive eruption regime: the example of the 1912 Novarupta eruption, Alaska. Geol. Soc. Am. Bull. 118, 620–634 (2006).

    Article  Google Scholar 

  9. Cabrera, A., Weinberg, R. F., Wright, H. M. N., Zlotnik, S. & Cas, R. A. F. Melt fracturing and healing: a mechanism for degassing of silicic obsidian. Geology 39, 67–70 (2011).

    Article  Google Scholar 

  10. Castro, J. M. et al. The role of melt-fracture degassing in defusing explosive rhyolite eruptions at volcán Chaitén. Earth Planet. Sci. Lett. 333-334, 63–69 (2012).

    Article  Google Scholar 

  11. Nguyen, C. T., Gonnermann, H. M. & Houghton, B. F. Explosive to effusive transition during the largest volcanic eruption of the 20th century (Novarupta 1912, Alaska). Geology 42, 703–706 (2014).

    Article  Google Scholar 

  12. Preece, K. et al. Transitions between explosive and effusive phases during the cataclysmic 2010 eruption of Merapi volcano, Java, Indonesia. Bull. Volcanol. 78, 54 (2016).

    Article  Google Scholar 

  13. Dingwell, D. B. Volcanic dilemma: flow or blow? Science 273, 1054–1055 (1996).

    Article  Google Scholar 

  14. Papale, P. Strain-induced magma fragmentation in explosive eruptions. Nature 397, 425–428 (1999).

    Article  Google Scholar 

  15. Rosi, M., Landi, P., Polacci, M., Di Muro, A. & Zandomeneghi, D. Role of conduit shear on ascent of the crystal-rich magma feeding the 800-year-b.p. Plinian eruption of Quilotoa volcano (Ecuador). Bull. Volcanol. 66, 307–321 (2004).

    Article  Google Scholar 

  16. Mastin, L. G. The controlling effect of viscous dissipation on magma flow in silicic conduits. J. Volcanol. Geotherm. Res. 143, 17–28 (2005).

    Article  Google Scholar 

  17. Burgisser, A. & Gardner, J. E. Experimental constraints on degassing and permeability in volcanic conduit flow. Bull. Volcanol. 67, 42–56 (2005).

    Article  Google Scholar 

  18. Castro, J. M. & Gardner, J. E. Did magma ascent rate control the explosive–effusive transition at the Inyo volcanic chain, California? Geology 36, 279–282 (2008).

    Article  Google Scholar 

  19. Degruyter, W., Bachmann, O. & Burgisser, A. Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc). Bull. Volcanol. 72, 63–74 (2010).

    Article  Google Scholar 

  20. Mader, H. M., Llewellin, E. W. & Mueller, S. P. The rheology of two-phase magmas: a review and analysis. J. Volcanol. Geotherm. Res. 257, 135–158 (2013).

    Article  Google Scholar 

  21. Pollaci, M., Rosi, M., Landi, P., Di Muro, A. & Papale, P. Novel interpretation for shift between eruptive styles in some volcanoes. Eos 86, 333–340 (2005).

    Article  Google Scholar 

  22. Parfitt, E. A. & Wilson, L. Fundamentals of Physical Volcanology (Blackwell, 2008).

  23. Wadsworth, F. B., Llewellin, E. W., Vasseur, J., Gardner, J. E. & Tuffen, H. Explosive–effusive volcanic eruption transitions caused by sintering. Sci. Adv. 6, eaba7940 (2020).

    Article  Google Scholar 

  24. Ruprecht, P. & Bachmann, O. Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. Geology 38, 919–922 (2010).

    Article  Google Scholar 

  25. Pallister, J. S., Hoblitt, R. P. & Reyes, A. G. A basalt trigger for the 1991 eruptions of Pinatubo volcano? Nature 356, 426–428 (1992).

    Article  Google Scholar 

  26. Bachmann, O., Dungan, M. A. & Lipman, P. W. Voluminous lava-like precursor to a major ash-flow tuff: low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado. J. Volcanol. Geotherm. Res. 98, 153–171 (2000).

    Article  Google Scholar 

  27. Geshi, N., Yamada, I., Matsumoto, K., Nishihara, A. & Miyagi, I. Accumulation of rhyolite magma and triggers for a caldera-forming eruption of the Aira Caldera, Japan. Bull. Volcanol. 82, 44 (2020).

    Article  Google Scholar 

  28. Huber, C., Townsend, M., Degruyter, W. & Bachmann, O. Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology. Nat. Geosci. 12, 762–768 (2019).

    Article  Google Scholar 

  29. Bachmann, O. & Huber, C. Silicic magma reservoirs in the Earth’s crust. Am. Mineral. 101, 2377–2404 (2016).

    Article  Google Scholar 

  30. Holland, T. & Blundy, J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol. 116, 433–447 (1994).

    Article  Google Scholar 

  31. Putirka, K. in Minerals, Inclusions and Volcanic Processes; Reviews in Mineralogy and Geochemistry Vol. 69 (eds Putirka, K. & Tepley, F.) 61–120 (Mineralogical Society of America, 2008).

  32. Venezky, D. & Rutherford, M. Petrology and Fe-Ti oxide reequilibration of the 1991 Mount Unzen mixed magma. J. Volcanol. Geotherm. Res. 89, 213–230 (1999).

    Article  Google Scholar 

  33. Koleszar, A. M., Kent, A. J. R., Wallace, P. J. & Scott, W. E. Controls on long-term low explosivity at andesitic arc volcanoes: insights from Mount Hood, Oregon. J. Volcanol. Geotherm. Res. 219-220, 1–14 (2012).

    Article  Google Scholar 

  34. Degruyter, W., Huber, C., Bachmann, O., Cooper, K. M. & Kent, A. J. R. Influence of exsolved volatiles on reheating silicic magmas by recharge and consequences for eruptive style at Volcan Quizapu (Chile). Geochem. Geophys. Geosyst. 18, 4123–4135 (2017).

    Article  Google Scholar 

  35. Popa, R.-G. et al. A connection between magma chamber processes and eruptive styles revealed at Nisyros-Yali volcano (Greece). J. Volcanol. Geotherm. Res. 387, 106666 (2019).

    Article  Google Scholar 

  36. Zhang, Y., Stolper, E. M. & Wasserburg, G. J. Diffusion of water in rhyolitic glasses. Geochim. Cosmochim. Acta 55, 441–456 (1991).

    Article  Google Scholar 

  37. Severs, M. J., Azbej, T., Thomas, J. B., Mandeville, C. W. & Bodnar, R. J. Experimental determination of H2O loss from melt inclusions during laboratory heating: evidence from Raman spectroscopy. Chem. Geol. 237, 358–371 (2007).

    Article  Google Scholar 

  38. Waters, L. E. & Lange, R. A. An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites. Am. Mineral. 100, 2172–2184 (2015).

    Article  Google Scholar 

  39. Edmonds, M. & Woods, A. W. Exsolved volatiles in magma reservoirs. J. Volcanol. Geotherm. Res. 368, 13–30 (2018).

    Article  Google Scholar 

  40. Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J. Petrol. 53, 875–890 (2012).

    Article  Google Scholar 

  41. Huppert, H. E. & Woods, A. W. The role of volatiles in magma chamber dynamics. Nature 420, 493–495 (2002).

    Article  Google Scholar 

  42. Mastin, L. G., Roeloffs, E., Beeler, N. M. & Quick, J. E. Constraints on the size, overpressure, and volatile content of the Mount St. Helens magma system from geodetic and dome-growth measurements during the 2004–2006+ eruption Professional Paper 1750; 461–488 (USGS, 2008).

  43. Popa, R.-G. et al. Water exsolution in the magma chamber favors effusive eruptions: application of Cl-F partitioning behavior at the Nisyros–Yali volcanic area. Chem. Geol. 570, 120170 (2021).

    Article  Google Scholar 

  44. Newman, S. & Lowenstern, J. B. VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for Excel. Comput. Geosci. 28, 597–604 (2002).

    Article  Google Scholar 

  45. Spieler, O. et al. The fragmentation threshold of pyroclastic rocks. Earth Planet. Sci. Lett. 226, 139–148 (2004).

    Article  Google Scholar 

  46. Zhang, Y. A criterion for the fragmentation of bubbly magma based on brittle failure theory. Nature 402, 648–650 (1999).

    Article  Google Scholar 

  47. Gonnermann, H. & Manga, M. Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426, 432–435 (2003).

    Article  Google Scholar 

  48. Alidibirov, M. & Dingwell, D. B. Magma fragmentation by rapid decompression. Nature 380, 146–148 (1996).

    Article  Google Scholar 

  49. Pistone, M., Caricchi, L. & Ulmer, P. CO2 favours the accumulation of excess fluids in felsic magmas. Terra Nova 33, 120–128 (2020).

    Article  Google Scholar 

  50. Oppenheimer, J., Rust, A. C., Cashman, K. V. & Sandnes, B. Gas migration regimes and outgassing in particle-rich suspensions. Front. Phys. 3, 60 (2015).

    Article  Google Scholar 

  51. Parmigiani, A., Degruyter, W., Leclaire, S., Huber, C. & Bachmann, O. The mechanics of shallow magma reservoir outgassing. Geochem. Geophys. Geosyst. 18, 2887–2905 (2017).

    Article  Google Scholar 

  52. Colombier, M. et al. In situ observation of the percolation threshold in multiphase magma analogues. Bull. Volcanol. 82, 32 (2020).

    Article  Google Scholar 

  53. Popa, R.-G., Dietrich, V. J. & Bachmann, O. Effusive–explosive transitions of water-undersaturated magmas. The case study of Methana volcano, South Aegean Arc. J. Volcanol. Geotherm. Res. 399, 106884 (2020).

    Article  Google Scholar 

  54. Hess, K.-U. & Dingwell, D. B. Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am. Mineral. 81, 1297–1300 (1996).

    Google Scholar 

  55. Degruyter, W. & Huber, C. A model for eruption frequency of upper crustal silicic magma chambers. Earth Planet. Sci. Lett. 403, 117–130 (2014).

    Article  Google Scholar 

  56. Townsend, M., Huber, C., Degruyter, W. & Bachmann, O. Magma chamber growth during intercaldera periods: insights from thermo‐mechanical modeling with applications to Laguna del Maule, Campi Flegrei, Santorini, and Aso. Geochem. Geophys. Geosyst. 20, 1574–1591 (2019).

    Article  Google Scholar 

  57. Kozono, T. et al. Magma discharge variations during the 2011 eruptions of Shinmoe-dake volcano, Japan, revealed by geodetic and satellite observations. Bull. Volcanol. 75, 695 (2013).

    Article  Google Scholar 

  58. Hill, G. J. et al. Temporal magnetotellurics reveals mechanics of the 2012 Mount Tongariro, NZ, Eruption. Geophys. Res. Lett. 47, e2019GL086429 (2019).

    Google Scholar 

  59. Marsh, B. D. On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib. Mineral. Petrol. 78, 85–98 (1981).

    Article  Google Scholar 

  60. Popa, R.-G., Bachmann, O. & Huber, C. Global overview of pre-eruptive magma chamber conditions, version 1.0. EarthChem https://doi.org/10.26022/IEDA/112061 (2021).

  61. Popa, R.-G., Bachmann, O. & Huber, C. Source data for “Explosive or effusive style of volcanic eruption determined by magma storage conditions,” version 1.0. EarthChem https://doi.org/10.26022/IEDA/112064 (2021).

Download references

Acknowledgements

O.B. acknowledges funding from the Swiss National Science Foundation grant 200021_178928 and C.H. from National Science Foundation fund EAR-20211328. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.-G.P and O.B. conceptualized the study. R.-G.P. collected the global dataset and performed the calculations for the pre-eruptive magma chamber conditions. O.B. performed the calculations for the evolution of the volume of exsolved volatiles with crystallization. C.H. performed the calculations estimating the effect of exsolved volatiles upon magma recharge in the subvolcanic storage region. R.-G.P. drafted the manuscript together with O.B. and C.H. All authors contributed to the interpretation of the results and to the preparation of the manuscript.

Corresponding author

Correspondence to Răzvan-Gabriel Popa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling editor: Rebecca Neely, in collaboration with the Nature Geoscience team. Nature Geoscience thanks Takehiro Koyaguchi, Edward Llewellin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Data 1

Global overview of pre-eruptive magma chamber conditions and associated references.

Source data

Source Data Fig. 2

Simulation of volatile exsolution with crystallization.

Source Data Fig. 3

Melt viscosity variations.

Source Data Fig. 5

Magma compressibility model output.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popa, RG., Bachmann, O. & Huber, C. Explosive or effusive style of volcanic eruption determined by magma storage conditions. Nat. Geosci. 14, 781–786 (2021). https://doi.org/10.1038/s41561-021-00827-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00827-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing