Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A tree of Indo-African mantle plumes imaged by seismic tomography

Abstract

Mantle plumes were conceived as thin, vertical conduits in which buoyant, hot rock from the lowermost mantle rises to Earth’s surface, manifesting as hotspot-type volcanism far from plate boundaries. Spatially correlated with hotspots are two vast provinces of slow seismic wave propagation in the lowermost mantle, probably representing the heat reservoirs that feed plumes. Imaging plume conduits has proved difficult because most are located beneath the non-instrumented oceans, and they may be thin. Here we combine new seismological datasets to resolve mantle upwelling across all depths and length scales, centred on Africa and the Indian and Southern oceans. Using seismic waves that sample the deepest mantle extensively, we show that mantle upwellings are arranged in a tree-like structure. From a central, compact trunk below ~1,500 km depth, three branches tilt outwards and up towards various Indo-Austral hotspots. We propose that each tilting branch represents an alignment of vertically rising blobs or proto-plumes, which detached in a linear staggered sequence from their underlying low-velocity corridor at the core–mantle boundary. Once a blob reaches the viscosity discontinuity between lower and upper mantle, it spawns a ‘classical’ plume-head/plume-tail sequence.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The RHUM–RUM experiment instrumented the southwestern Indian Ocean with 57 broadband OBSs and 35 broadband land seismometers.
Fig. 2: East–west cross sections through La Réunion and South Africa, showing the contributions of three tomography datasets to resolving whole-mantle structure.
Fig. 3: 3D rendering of slow P-velocity anomalies in model RROx-19.
Fig. 4: 3D rendering of seismically slow regions in the lower mantle, presumed to be upwelling.
Fig. 5: Interpreted evolution of a tilted mid-mantle upwelling underlain by a low-velocity CMB corridor.

Data availability

All data used in this study are freely retrievable from international data centres that support the ‘web service’ protocol of the International Federation of Digital Seismograph Networks. We used the obspyDMT software of Hosseini and Sigloch56 to retrieve and pre-process all the waveforms used in this study. Our tomography model and the models compared with in this paper are freely available through the ‘SubMachine’ tomography web portal: http://submachine.earth.ox.ac.uk/ (where the user can select models, depths and other parameters).

Code availability

The software used for tomographic inversion is available upon request from the corresponding author. It was customized from the software freely available at https://www.geoazur.fr/GLOBALSEIS/Soft.html.

References

  1. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Article  Google Scholar 

  2. Sleep, N. H. Hotspots and mantle plumes: some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990).

    Article  Google Scholar 

  3. Davies, G. F. Ocean bathymetry and mantle convection: 1. Large-scale flow and hotspots. J. Geophys. Res. Solid Earth 93, 10467–10480 (1988).

    Article  Google Scholar 

  4. Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article  Google Scholar 

  5. Garnero, E. J., McNamara, A. K. & Shim, S.-H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    Article  Google Scholar 

  6. Ritsema, J., Van Heijst, H. J. & Woodhouse, J. H. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 286, 1925–1928 (1999).

    Article  Google Scholar 

  7. Montelli, R. et al. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343 (2004).

    Article  Google Scholar 

  8. French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Article  Google Scholar 

  9. Davaille, A. Simultaneous generation of hotspots and superwells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999).

    Article  Google Scholar 

  10. Kumagai, I., Davaille, A., Kurita, K. & Stutzmann, E. Mantle plumes: thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space. Geophys. Res. Lett. 35, L16301 (2008).

    Article  Google Scholar 

  11. Davaille, A., Stutzmann, E., Silveira, G., Besse, J. & Courtillot, V. Convective patterns under the Indo-Atlantic «box». Earth Planet. Sci. Lett. 239, 233–252 (2005).

    Article  Google Scholar 

  12. Steinberger, B. & Antretter, M. Conduit diameter and buoyant rising speed of mantle plumes: implications for the motion of hot spots and shape of plume conduits. Geochem. Geophys. Geosyst. 7, Q11018 (2006).

    Article  Google Scholar 

  13. Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Article  Google Scholar 

  14. Suetsugu, D. et al. South Pacific mantle plumes imaged by seismic observation on islands and seafloor. Geochem. Geophys. Geosyst. 10, Q11014 (2009).

    Article  Google Scholar 

  15. Wolfe, C. J. et al. Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science 326, 1388–1390 (2009).

    Article  Google Scholar 

  16. Schlömer, A., Geissler, W. H., Jokat, W. & Jegen, M. Hunting for the Tristan mantle plume—an upper mantle tomography around the volcanic island of Tristan da Cunha. Earth Planet. Sci. Lett. 462, 122–131 (2017).

    Article  Google Scholar 

  17. Nolet, G. et al. Imaging the Galápagos mantle plume with an unconventional application of floating seismometers. Sci. Rep. 9, 1326 (2019).

    Article  Google Scholar 

  18. Barruol, G. & Sigloch, K. Investigating La Réunion hot spot from crust to core. Eos 94, 205–207 (2013).

    Article  Google Scholar 

  19. Morgan, W. J. in The Oceanic Lithosphere (Ed. Emiliani, C.) 443 (Wiley, 1981).

  20. Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot spot tracks: plume heads and tails. Science 246, 103–107 (1989).

    Article  Google Scholar 

  21. Engdahl, E. R., van der Hilst, R. & Buland, R. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 88, 722–743 (1998).

    Google Scholar 

  22. Weston, J., Engdahl, E. R., Harris, J., Di Giacomo, D. & Storchak, D. A. ISC-EHB: reconstruction of a robust earthquake data set. Geophys. J. Int. 214, 474–484 (2018).

    Article  Google Scholar 

  23. Hosseini, K. et al. Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves. Geophys. J. Int. 220, 96–141 (2020).

    Article  Google Scholar 

  24. Masters, G., Laske, G., Bolton, H. & Dziewonski, A. in Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale (eds Karato, S.-I. et al.) 63–87 (AGU, 2000).

  25. Ni, S., Tan, E., Gurnis, M. & Helmberger, D. Sharp sides to the African superplume. Science 296, 1850–1852 (2002).

    Article  Google Scholar 

  26. Grand, S. P., Van Der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: a snapshot of convection in the Earth. GSA Today 7, 1–7 (1997).

    Google Scholar 

  27. Rindraharisaona, E. J. et al. Crustal structure of southern Madagascar from receiver functions and ambient noise correlation: implications for crustal evolution. J. Geophys. Res. Solid Earth 122, 1179–1197 (2017).

    Article  Google Scholar 

  28. Pratt, M. J. et al. Shear velocity structure of the crust and upper mantle of Madagascar derived from surface wave tomography. Earth Planet. Sci. Lett. 458, 405–417 (2017).

    Article  Google Scholar 

  29. Roberts, G. G., Paul, J. D., White, N. & Winterbourne, J. Temporal and spatial evolution of dynamic support from river profiles: a framework for Madagascar. Geochem. Geophys. Geosyst. 13, 1525–2027 (2012).

    Article  Google Scholar 

  30. Cucciniello, C. et al. From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution. Lithos 274–275, 363–382 (2017).

    Article  Google Scholar 

  31. Mazzullo, A. et al. Anisotropic tomography around La Réunion Island from Rayleigh waves. J. Geophys. Res. Solid Earth 122, 9132–9148 (2017).

    Article  Google Scholar 

  32. Barruol, G. et al. Large-scale flow of Indian Ocean asthenosphere driven by Réunion plume. Nat. Geosci. https://doi.org/10.1038/s41561-019-0479-3 (2019).

  33. O’Neill, C., Müller, D. & Steinberger, B. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem. Geophys. Geosyst. 6, Q04003 (2005).

    Google Scholar 

  34. Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146, 226–250 (2016).

    Article  Google Scholar 

  35. Ring, U. The east African rift system. Austrian J. Earth Sci. 107, 132–146 (2014).

    Google Scholar 

  36. Hager, B. H., Richards, M. A., Dziewonski, A. M., Comer, R. P. & Clayton, R. W. Lower mantle heterogeneity, dynamic topography and the geoid. Nature 314, 752–752 (1985).

    Article  Google Scholar 

  37. Hansen, S. E., Nyblade, A. A. & Benoit, M. H. Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: implications for the origin of Cenozoic Afro-Arabian tectonism. Earth Planet. Sci. Lett. 319–320, 23–34 (2012).

    Article  Google Scholar 

  38. Turner, J. S. Buoyancy Effects in Fluids (Cambridge Univ. Press, 1973).

  39. Namiki, A. & Kurita, K. The influence of boundary heterogeneity in experimental models of mantle convection with internal heat sources. Phys. Earth Planet. Inter. 128, 195–205 (1999).

    Article  Google Scholar 

  40. Austermann, J., Kaye, B. T., Mitrovica, J. X. & Huybers, P. A statistical analysis of the correlation between large igneous provinces and lower mantle seismic structure. Geophys. J. Int. 197, 1–9 (2014).

    Article  Google Scholar 

  41. Gibbons, A. D., Whittaker, J. M. & Müller, R. D. The breakup of East Gondwana: assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model. J. Geophys. Res. Solid Earth 118, 808–822 (2013).

    Article  Google Scholar 

  42. Coffin, M. F. et al. Kerguelen hotspot magma output since 130 Ma. J. Petrol. 43, 1121–1139 (2002).

    Article  Google Scholar 

  43. Storey, M. et al. Timing of hot spot-related volcanism and the breakup of Madagascar and India. Science 267, 852–855 (1995).

    Article  Google Scholar 

  44. Nürnberg, D. & Müller, R. D. The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics 191, 27–53 (1991).

    Article  Google Scholar 

  45. Courtillot, V., Jaupart, C., Manighetti, I., Tapponnier, P. & Besse, J. On causal links between flood basalts and continental breakup. Earth Planet. Sci. Lett. 166, 177–195 (1999).

    Article  Google Scholar 

  46. White, R. & McKenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7729 (1989).

    Article  Google Scholar 

  47. Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C. R. Geosci. 335, 113–140 (2003).

    Article  Google Scholar 

  48. Madrigal, P., Gazel, E., Flores, K. E., Bizimis, M. & Jicha, B. Record of massive upwellings from the Pacific large low shear velocity province. Nat. Commun. 7, 13309 (2016).

    Article  Google Scholar 

  49. Jones, A. G., Afonso, J. C. & Fullea, J. Geochemical and geophysical constrains on the dynamic topography of the Southern African Plateau. Geochem. Geophys. Geosyst. 18, 3556–3575 (2017).

    Article  Google Scholar 

  50. Dupre, B. & Allegre, C. J. Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303, 142–145 (1983).

    Article  Google Scholar 

  51. Jackson, M. G., Becker, T. W. & Konter, J. G. Evidence for a deep mantle source for EM and HIMU domains from integrated geochemical and geophysical constraints. Earth Planet. Sci. Lett. 484, 154–167 (2018).

    Article  Google Scholar 

  52. Tilmann, F., Yuan, X., Rümpker, G. & Rindraharisaona, E. SELASOMA Project, Madagascar 2012–2014 (Deutsches GeoForschungsZentrum, 2012); https://doi.org/10.14470/MR7567431421

  53. Wysession, M., Wiens, D. & Nyblade, A. Investigation of sources of intraplate volcanism using PASSCAL broadband instruments in Madagascar, the Comores, and Mozambique (International Federation of Digital Seismograph Networks, 2011); https://doi.org/10.7914/SN/XV_2011

  54. Cande, S. C. & Stegman, D. R. Indian and African plate motions driven by the push force of the Réunion plume head. Nature 475, 47–52 (2011).

    Article  Google Scholar 

  55. Barruol, G., Sigloch, K., RHUM-RUM Group & RESIF. HUM-RUM experiment, 2011-2015, code YV (Réunion Hotspot and Upper Mantle – Réunion’s Unterer Mantel) funded by ANR, DFG, CNRS-INSU, IPEV, TAAF, instrumented by DEPAS, INSU-OBS, AWI and the Universities of Muenster, Bonn, La Réunion (RESIF - Réseau Sismologique et géodésique Français, 2011); https://www.fdsn.org/networks/detail/YV_2011/

  56. Hosseini, K. & Sigloch, K. ObspyDMT: a Python toolbox for retrieving and processing large seismological data sets. Solid Earth 8, 1047–1070 (2017).

    Article  Google Scholar 

  57. Stähler, S. C. et al. Performance report of the RHUM–RUM ocean bottom seismometer network around La Réunion, western Indian Ocean. Adv. Geosci. 41, 43–63 (2016).

    Article  Google Scholar 

  58. Sigloch, K. & Nolet, G. Measuring finite-frequency body-wave amplitudes and traveltimes. Geophys. J. Int. 167, 271–287 (2006).

    Article  Google Scholar 

  59. Nissen-Meyer, T. et al. AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth https://doi.org/10.5194/se-5-425-2014 (2014).

  60. van Driel, M., Krischer, L., Stähler, S. C., Hosseini, K. & Nissen-Meyer, T. Instaseis: instant global seismograms based on a broadband waveform database. Solid Earth 6, 701–717 (2015).

    Article  Google Scholar 

  61. Kennett, B. L. N. IASPEI 1991 seismological tables. Terra Nova 3, 122 (1991).

    Article  Google Scholar 

  62. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  63. Wysession, M. E. Large-scale structure at the core–mantle boundary from diffracted waves. Nature 382, 244–248 (1996).

    Article  Google Scholar 

  64. Kárason, H. & van der Hilst, R. D. Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff). J. Geophys. Res. Solid Earth 106, 6569–6587 (2001).

    Article  Google Scholar 

  65. Hosseini, K. & Sigloch, K. Multifrequency measurements of core-diffracted P waves (Pdiff) for global waveform tomography. Geophys. J. Int. 203, 506–521 (2015).

    Article  Google Scholar 

  66. Bassin, C., Laske, G. & Masters, G. The current limits of resolution for surface wave tomography in North America. Eos 81, F987 (2000).

    Google Scholar 

  67. Nolet, G. A Breviary of Seismic Tomography (Cambridge Univ. Press, 2008); https://doi.org/10.1017/CBO9780511984709

  68. Ritsema, J., van Heijst, H. J., Woodhouse, J. H. & Deuss, A. Long-period body wave traveltimes through the crust: implication for crustal corrections and seismic tomography. Geophys. J. Int. 179, 1255–1261 (2009).

    Article  Google Scholar 

  69. Dahlen, F. A., Hung, S. & Nolet, G. Frechet kernels for finite-frequency traveltimes—I. Theory. Geophys. J. Int. 141, 157–174 (2000).

    Article  Google Scholar 

  70. Montelli, R., Nolet, G., Dahlen, F. A. & Masters, G. A catalogue of deep mantle plumes: new results from finite-frequency tomography. Geochem. Geophys. Geosyst. 7, Q11007 (2006).

    Article  Google Scholar 

  71. Sigloch, K. Mantle provinces under North America from multifrequency P wave tomography. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010GC003421 (2011).

  72. Ahrens, J., Geveci, B. & Law, C. in The Visualization Handbook (eds Hansen, C. D. and Johnson, C. R.) 717–731 (Elsevier, 2005).

  73. Hosseini, K. et al. SubMachine: web-based tools for exploring seismic tomography and other models of Earth’s deep interior. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2018GC007431 (2018).

  74. Obayashi, M. et al. Finite frequency whole mantle P wave tomography: improvement of subducted slab images. Geophys. Res. Lett. 40, 5652–5657 (2013).

    Article  Google Scholar 

  75. Houser, C., Masters, G., Shearer, P. & Laske, G. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int. 174, 195–212 (2008).

    Article  Google Scholar 

  76. Moulik, P. & Ekström, G. The relationships between large-scale variations in shear velocity, density, and compressional velocity in the Earth’s mantle. J. Geophys. Res. Solid Earth 121, 2737–2771 (2016).

    Article  Google Scholar 

  77. Ritsema, J., Deuss, A., Van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  Google Scholar 

  78. Auer, L., Boschi, L., Becker, T., Nissen-Meyer, T. & Giardini, D. Savani: a variable resolution whole-mantle model of anisotropic shear velocity variations based on multiple data sets. J. Geophys. Res. Solid Earth https://doi.org/10.1002/2013JB010773 (2014).

  79. French, S. W. & Romanowicz, B. A. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199, 1303–1327 (2014).

    Article  Google Scholar 

  80. Lu, C. & Grand, S. P. The effect of subducting slabs in global shear wave tomography. Geophys. J. Int. 205, 1074–1085 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

RHUM–RUM was funded by Deutsche Forschungsgemeinschaft in Germany (grants SI1538/2-1, SI1538/3-1 and SI1538/4-1 and ship grant R/V Meteor cruise 101) and by Agence Nationale de la Recherche in France (project ANR-11-BS56-0013). Additional supports came from Centre National de la Recherche Scientifique–Institut National des Sciences de l’Univers (CNRS–INSU), Terres Australes et Antarctiques Françaises (TAAF), Institut Polaire Paul Emile Victor (IPEV), University of La Réunion and Alfred Wegener Institut (AWI). OBSs were provided by DEPAS (Deutsche Geräte-Pool für Amphibische Seismologie, Bremerhaven), GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel and INSU-IPGP (Institut National des Sciences de l’Univers - Institut de Physique du Globe de Paris). M.T. was funded by the NERC DTP in Environmental Research award NE/L002612/1 and a St. Edmund Hall RCUK Partnership award. K.S. acknowledges additional funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement no. PCIG14-GA-2013-631104 ‘RHUM–RUM’ and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 639003 ‘DEEP TIME’). K.H. acknowledges support by The Alan Turing Institute under the EPSRC grant EP/N510129/1. We thank M. Wysession for sharing MACOMO data. This is IPGP contribution 4097.

Author information

Authors and Affiliations

Authors

Contributions

M.T. analysed the RHUM–RUM body-wave data, modelled their sensitivities and developed the 3D visualization techniques. K.H. analysed the P-diffracted data and computed sensitivity kernels. M.T. and K.H. jointly integrated the datasets into a global-scale tomographic model. K.S. designed the tomography studies and acted as the primary academic adviser to M.T. and K.H. G.B. and K.S. designed the RHUM–RUM experiment and led the acquisition of its data. All authors contributed to writing this manuscript.

Corresponding author

Correspondence to Maria Tsekhmistrenko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Alistair Boyce, Jeroen Ritsema and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Stefan Lachowycz.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 East-west, thick-slice cross-section through Réunion and South Africa: comparison of our model (top) with other published tomography models.

View and 3-D visualisation are the same as in Figs. 2 and 3. Colour bar refers to dVp/Vp in % for P-velocity models and dVs/Vs for S-velocity models. Orange line on the CMB outlines the ‘Plume Generation Zone’ proposed by Burke et al. (ref. 4), a convenient visual guide for model comparison. Top row: three global P-wave tomographies, by Hosseini et al. 2019 (DETOX-P323); Obayashi et al. 2014 (GAP-P474); Houser et al. 2006 (HMSL-P0675). Middle and bottom row: 6 global S-velocity models, by Montelli et al. 2006 (PRI-S0570); Moulik et al. 2016 (S363ANI + M76); Ritsema et al. 2011 (S40RTS77); Auer 2014 (savani78), French and Romanowicz 2014 (SEMUCB-WM179), Lu and Grand 2016 (TX201580).

Extended Data Fig. 2 Tomography result and resolution test for two thin vertical plume conduits observed in the upper mantle slight southwest of La Réunion and offshore southernmost Madagascar.

Top row, left: Joint tomography model (ISC, Pdiff, RHUM-RUM P) at 200 km depth (map outcrop extending from 11ºS/45ºE to 26ºS/65ºE). Purple dots are RHUM-RUM OBS locations. The dominant feature is the sharp, SW-NE-trending contrast between slow (red) anomalies around the Réunion hotspot and its asthenospheric flows towards the Central Indian Ridge (which runs N-S along the easternmost edge of the map), versus the fast (blue) anomalies of the Mascarene basin’s old, thick lithosphere. Top right: Cross-section through the two slow conduits. Its location is marked in the previous map by a black line and coloured dots. (Due to their three-dimensional, moderately tilting geometries, the conduits are more clearly apparent as such in the 3-D thick-slice rendering of Fig. 3.) Second row: Cross-sections of resolution test input and output, consisting of two vertical columns of 150 km diameter in the observed locations, from the surface to 700 km depth. Rows 3-6: Resolution test input and output at 150, 300, 500 and 700 km depth. The Réunion column is more difficult to recover than the Madagascar column because it falls into a gap between OBS stations.

Extended Data Fig. 3 Whole mantle cross-section striking north-south through Réunion; the view is from the east.

Left panel shows a 2-D section; right panel shows the same section supplemented by low-velocity isosurfaces rendered in a 1000-km thick great-circle slice (shaded blue in the globe inset). Same rendering styles as in Fig. 2. This perspective shows most clearly the absence of Réunion plume tail into the lowermost mantle. Long-dashed purple line marks the interpreted cusp of the LLVP, as in Fig. 3. Bull’s-eye marks the area where the Kerguelen mid-mantle branch emerges toward the viewer.

Extended Data Fig. 4 Model comparison of seismically slow anomalies extending up to 500 km above the CMB (2400-2900 km depth).

The same 4 P-velocity and 6 S-velocity models are rendered as in Extended Data Fig. 1. Visualization style of five nested, slow velocity isosurfaces is the same as in Figs. 2, 3, and Extended Data Fig. 1. The orange line at the CMB outlines the Plume Generation Zone proposed by ref. 4. Southwestward away from the LLVP’s core (reddest area), in direction of 7 o’clock, DETOX-P3 and all six S-wave models show a bulge towards Bouvet hotspot. This observation is consistent with the existence of a fully developed CMB corridor towards Bouvet, which would be recovered only as such a vestigial bulge (see targeted resolution test Extended Data Fig. 5) by our tomography, and presumably by others.

Extended Data Fig. 5 Seismic resolvability of three slow corridors at the CMB.

Left: the resolution test input consists of three corridor-like, slow anomalies diverging from the LLVP centre under South Africa. Its geometries are idealised from lowermost mantle structure imaged by RROx-19. As in the tomography, corridors are ~700 km wide and 500 km ‘high’ above the CMB. The white column shows the location of Bouvet. Right: the results of this test confirm that the Southern Indian Ocean and East African corridors can be recovered well, while a Bouvet corridor would not be resolvable in our model, except for remnant southeastward bulging, away from the LLVP’s core. Such a bulge is actually observed by all S-wave tomographies in Extended Data Fig. 4, and by P-wave model DETOX-P3. Hence the presence of a fully developed CMB corridor towards Bouvet is consistent with currently available data.

Extended Data Fig. 6 Thick-slice cross-section through Afar, South Africa, and Bouvet (see globe inset): comparison of our model (top) with other published tomography models.

Same 3-D visualisation and same models rendered as in Supplementary Fig. 1. Colour bar refers to dVp/Vp in % for P-velocity models and dVs/Vs for S-velocity models. Orange line on the CMB outlines the ‘Plume Generation Zone’ proposed by Burke et al. (ref. 4).

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsekhmistrenko, M., Sigloch, K., Hosseini, K. et al. A tree of Indo-African mantle plumes imaged by seismic tomography. Nat. Geosci. 14, 612–619 (2021). https://doi.org/10.1038/s41561-021-00762-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00762-9

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing