Abstract
The effect of protoplanetary differentiation on the fate of life-essential volatiles such as nitrogen and carbon and its subsequent effect on the dynamics of planetary growth is unknown. Because the dissolution of nitrogen in magma oceans depends on its partial pressure and oxygen fugacity, it is an ideal proxy to track volatile redistribution in protoplanets as a function of their sizes and growth zones. Using high-pressure/temperature experiments in graphite-undersaturated conditions, here we show that the siderophilic (iron-loving) character of nitrogen is an order of magnitude higher than previous estimates across a wide range of oxygen fugacity. The experimental data combined with metal–silicate–atmosphere fractionation models suggest that asteroid-sized protoplanets, and planetary embryos that grew from them, were nitrogen depleted. However, protoplanets that grew to planetary embryo size before undergoing differentiation had nitrogen-rich cores and nitrogen-poor silicate reservoirs. Bulk silicate reservoirs of large Earth-like planets obtained nitrogen from the cores of the latter type of planetary embryos. Therefore, to satisfy the volatile budgets of Earth-like planets during the main stage of their growth, the timescales of planetary embryo accretion had to be shorter than their differentiation timescales; that is, Moon- to Mars-sized planetary embryos grew rapidly within ~1–2 Myrs of the Solar System’s formation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Nitrogen isotope evidence for Earth’s heterogeneous accretion of volatiles
Nature Communications Open Access 15 August 2022
-
Numerous chondritic impactors and oxidized magma ocean set Earth’s volatile depletion
Scientific Reports Open Access 22 October 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
The data supporting the findings of this study are available within the article and its Supplementary Information files. All new data associated with this paper will be made publicly available at https://doi.org/10.6084/m9.figshare.14191079.
References
Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).
Alexander, C. M. O. The origin of inner solar system water. Philos. Trans. R. Soc. A 375, 20150384 (2017).
Hirschmann, M. M. Constraints on the early delivery and fractionation of Earth’s major volatiles from C/H, C/N, and C/S ratios. Am. Mineral. 101, 540–553 (2016).
Dasgupta, R. & Grewal, D. S. in Deep Carbon: Past to Present (eds Orcutt, B. et al.) 4–39 (Cambridge Univ. Press, 2019); https://doi.org/10.1017/9781108677950.002
Alexander, C. M. O., McKeegan, K. D. & Altwegg, K. Water reservoirs in small planetary bodies: meteorites, asteroids, and comets. Space Sci. Rev. 214, 36 (2018).
Albarède, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009).
Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).
Grady, M. M. & Wright, I. P. Elemental and isotopic abundances of carbon and nitrogen in meteorites. Space Sci. Rev. 106, 231–248 (2003).
Grewal, D. S., Dasgupta, R. & Marty, B. A very early origin of isotopically distinct nitrogen in inner Solar System protoplanets. Nat. Astron. https://doi.org/10.1038/s41550-020-01283-y (2021).
Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5, eaau3669 (2019).
Grewal, D. S. et al. The fate of nitrogen during core–mantle separation on Earth. Geochim. Cosmochim. Acta 251, 87–115 (2019).
Speelmanns, I. M., Schmidt, M. W. & LiebskSpeelae, C. The almost lithophile character of nitrogen during core formation. Earth Planet. Sci. Lett. 510, 186–197 (2019).
Dalou, C., Hirschmann, M. M., von der Handt, A., Mosenfelder, J. & Armstrong, L. S. Nitrogen and carbon fractionation during core–mantle differentiation at shallow depth. Earth Planet. Sci. Lett. 458, 141–151 (2017).
Keppler, H. & Golabek, G. Graphite floatation on a magma ocean and the fate of carbon during core formation. Geochem. Perspect. Lett. 11, 12–17 (2019).
Roskosz, M., Bouhifd, M. A., Jephcoat, A. P., Marty, B. & Mysen, B. O. Nitrogen solubility in molten metal and silicate at high pressure and temperature. Geochim. Cosmochim. Acta 121, 15–28 (2013).
Kruijer, T. S. et al. Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014).
Greenwood, R. C., Franchi, I. A., Jambon, A. & Buchanan, P. C. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435, 916–918 (2005).
Carporzen, L. et al. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proc. Natl Acad. Sci. USA 108, 6386–6389 (2011).
Cournede, C. et al. An early solar system magnetic field recorded in CM chondrites. Earth Planet. Sci. Lett. 410, 62–74 (2015).
Young, E. D. et al. Near-equilibrium isotope fractionation during planetesimal evaporation. Icarus 323, 1–15 (2019).
Hin, R. C. et al. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549, 511–527 (2017).
Dalou, C. et al. Redox control on nitrogen isotope fractionation during planetary core formation. Proc. Natl Acad. Sci. USA 116, 14485–14494 (2019).
Jang, J.-M. et al. Nitrogen solubility in liquid Fe-C alloys. ISIJ Int. 54, 32–36 (2014).
Liu, J. et al. Loss of immiscible nitrogen from metallic melt explains Earth’s missing nitrogen. Geochem. Perspect. Lett. 11, 18–22 (2019).
Libourel, G., Marty, B. & Humbert, F. Nitrogen solubility in basaltic melt. Part I. Effect of oxygen fugacity. Geochim. Cosmochim. Acta 67, 4123–4135 (2003).
Grewal, D. S., Dasgupta, R. & Farnell, A. The speciation of carbon, nitrogen, and water in magma oceans and its effect on volatile partitioning between major reservoirs of the Solar System rocky bodies. Geochim. Cosmochim. Acta 280, 281–301 (2020).
Li, Y., Marty, B., Shcheka, S., Zimmermann, L. & Keppler, H. Nitrogen isotope fractionation during terrestrial core-mantle separation. Geochemical Perspect. Lett. 138–147 (2016); https://doi.org/10.7185/geochemlet.1614
Weidenschilling, S. J. Accretion of the asteroids: implications for their thermal evolution. Meteorit. Planet. Sci. 54, 1115–1132 (2019).
Weidenschilling, S. J. Initial sizes of planetesimals and accretion of the asteroids. Icarus 214, 671–684 (2011).
Johansen, A., Low, M. M., Mac, Lacerda, P. & Bizzarro, M. Growth of asteroids, planetary embryos, and Kuiper Belt objects by chondrule accretion. Sci. Adv. 1, e1500109 (2015).
Schiller, M., Bizzarro, M. & Fernandes, V. A. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555, 501–510 (2018).
Righter, K., Sutton, S. R., Danielson, L., Pando, K. & Newville, M. Redox variations in the inner solar system with new constraints from vanadium XANES in spinels. Am. Mineral. 101, 1928–1942 (2016).
Rubie, D. C. et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015).
Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).
Zahnle, K. J. & Catling, D. C. The cosmic shoreline: the evidence that escape determines which planets have atmospheres, and what this may mean for Proxima Centauri B. Astrophys. J. 843, 122 (2017).
Johnsone, C. P. The influences of stellar activity on planetary atmospheres. Proc. Int. Astron. Union 12, 168–179 (2016).
Odert, P. et al. Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets. Icarus 307, 327–346 (2018).
Schlichting, H. E., Sari, R. & Yalinewich, A. Atmospheric mass loss during planet formation: the importance of planetesimal impacts. Icarus 247, 81–94 (2015).
Hirschmann, M. M. Comparative deep Earth volatile cycles: the case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios. Earth Planet. Sci. Lett. 502, 262–273 (2018).
Chambers, J. E. & Wetherill, G. W. Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–327 (1998).
Siebert, J., Badro, J., Antonangeli, D. & Ryerson, F. J. Terrestrial accretion under oxidizing conditions. Science 339, 1194–1197 (2013).
Cartigny, P. & Marty, B. Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere–crust–mantle connection. Elements 9, 359–366 (2013).
Johansen, A. et al. A pebble accretion model for the formation of the terrestrial planets in the Solar System. Sci. Adv. 7, eabc0444 (2021).
Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 369, 1110–1113 (2020).
Hirschmann, M. M. Magma ocean influence on early atmosphere mass and composition. Earth Planet. Sci. Lett. 341–344, 48–57 (2012).
Tsuno, K. & Dasgupta, R. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon. Contrib. Mineral. Petrol. 161, 743–763 (2011).
Villegas, E. A. The Diffusion of Nitrogen in Liquid Iron Alloys at 1600°C. PhD Thesis, Stanford Univ. (1976).
Dasgupta, R., Chi, H., Shimizu, N., Buono, A. S. & Walker, D. Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: implications for the origin and distribution of terrestrial carbon. Geochim. Cosmochim. Acta 102, 191–212 (2013).
Tsuno, K., Grewal, D. S. & Dasgupta, R. Core–mantle fractionation of carbon in Earth and Mars: the effects of sulfur. Geochim. Cosmochim. Acta 238, 477–495 (2018).
Speelmanns, I. M., Schmidt, M. W. & Liebske, C. Nitrogen solubility in core materials. Geophys. Res. Lett. 45, 7434–7443 (2018).
Walker, D., Dasgupta, R., Li, J. & Buono, A. Nonstoichiometry and growth of some Fe carbides. Contrib. Mineral. Petrol. 166, 935–957 (2013).
Mosenfelder, J. L. et al. Nitrogen incorporation in silicates and metals: results from SIMS, EPMA, FTIR, and laser-extraction mass spectrometry. Am. Mineral. 104, 31–46 (2019).
Li, Y., Dasgupta, R., Tsuno, K., Monteleone, B. & Shimizu, N. Carbon and sulfur budget of the silicate Earth explained by accretion of differentiated planetary embryos. Nat. Geosci. 9, 781–785 (2016).
Kadik, A. A. et al. Solution behavior of reduced N–H–O volatiles in FeO–Na2O–SiO2–Al2O3 melt equilibrated with molten Fe alloy at high pressure and temperature. Phys. Earth Planet. Inter. 214, 14–24 (2013).
Holzheid, A., Palme, H. & Chakraborty, S. The activities of NiO, CoO and FeO in silicate melts. Chem. Geol. 139, 21–38 (1997).
Ma, Z. Thermodynamic description for concentrated metallic solutions using interaction parameters. Metall. Mater. Trans. B 32, 87–103 (2001).
Rubie, D. C. et al. Heterogeneous accretion, composition and core–mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011).
Deguen, R., Olson, P. & Cardin, P. Experiments on turbulent metal–silicate mixing in a magma ocean. Earth Planet. Sci. Lett. 310, 303–313 (2011).
Deguen, R., Landeau, M. & Olson, P. Turbulent metal–silicate mixing, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391, 274–287 (2014).
McDonough, W. F. & Sun, S.-s The composition of the Earth. Chem. Geol. 120, 223–253 (1995).
Yoshizaki, T. & McDonough, W. F. The composition of Mars. Geochim. Cosmochim. Acta 273, 137–162 (2020).
Nittler, L. R., Chabot, N. L., Grove, T. L. & Peplowski, P. N. in Mercury The View after MESSENGER (eds Solomon S. C., Nittler L. R. & Andersen, B. J.) pp 30–51 (Cambridge Univ. Press, 2019).
Acknowledgements
The manuscript benefitted from constructive criticism from S. Mikhail. G. Costin is acknowledged for help with electron microprobe analyses. D.S.G. received support from NASA FINESST grant 80NSSC19K1538. NASA grants 80NSSC18K0828 and 80NSSC18K1314 to R.D. supported the work. D.S.G. acknowledges additional support from a Lodieska Stockbridge Vaughn Fellowship by Rice University.
Author information
Authors and Affiliations
Contributions
D.S.G. conceived and developed the central ideas presented in this study. R.D. helped in refining the ideas. D.S.G. and R.D. designed the experiments. T.H. and D.S.G. performed the experiments. A.F. performed the FTIR analyses. D.S.G. analysed the experiments and developed the models. D.S.G. and R.D. interpreted the data. D.S.G. wrote the manuscript with inputs from R.D.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Peer review information Nature Geoscience thanks Sami Mikhail and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rebecca Neely.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Comparison of the silicate melt compositions of this study with previous studies as a function of oxygen fugacity.
Below IW–1.5 (fO2 range explored in this study), the silicate melt compositions of this study are more mafic, that is, have higher NBO/Ts, relative to the silicate melt compositions used to determine \(D_N^{{\mathrm{alloy}}/{\mathrm{silicate}}}\) in previous studies. Therefore, the silicate melt compositions of this study are more representative of magma oceans of inner Solar System rocky planets. Primitive mantle compositions are used to estimate the magma ocean compositions of Earth60, Mars61 and Mercury62. NBO/T is a measure of degree of silicate melt polymerization and is expressed as total non-bridging oxygens per tetrahedral cations; NBO/T = (2 × Total O)/T – 4, where T = Si + Ti + Al + Cr + P). The calculated error bars for NBO/T represent ±1-σ deviation based on the replicate electron microprobe analyses and are smaller than the symbol sizes for all data from this study.
Extended Data Fig. 2 Time series to determine the experimental duration necessary to reach equilibrium.
N contents in the (a) alloy and (b) silicate melts, and consequently (c) \(D_N^{{\mathrm{alloy}}/{\mathrm{silicate}}}\) show no variation beyond the uncertainties of the measurements as a function of time for experiments conducted at 3 GPa and 1600 °C for 0.5, 2, 6, and 12 hours (Experiment numbers: X63, G634, X74, and G639). These demonstrate that N exchange between the two phases had attained equilibrium at less than 0.5 hours in our experimental conditions. Also, an almost unchanged N content in alloy and silicate melts with increase in time means that there was no loss of N from the alloy + silicate melt system with increase in experimental run time. d, NBO/T of the silicate melt compositions also show no variation with time beyond the uncertainties of the measurements, which illustrates that the silicate melt compositions had also reached steady state. All experiments were conducted with a fixed starting composition of alloy + silicate mixture (70%ThB1+30%Fe-5Ni-5N-17.5Si). Error bars in all panels are ±1-σ deviation based on replicate electron microprobe analyses and where absent the error bars are smaller than the symbol size.
Extended Data Fig. 3 Thickness normalized FTIR spectra of the peaks associated with nitrogen species in the experimental silicate glasses of this study.
The only detectable, IR-active N-bearing peak was that of N-H stretching, marked by the grey band. No C-species were detectable.
Extended Data Fig. 4 Carbon and nitrogen contents in the alloy melts as a function of oxygen fugacity.
a, C content in the alloy melt in graphite-undersaturated experiments of this study is substantially lower (0.11–0.80 wt.%) than the graphite-saturated experiments of the previous studies10,11,12,13,22,27. b, In agreement with previous studies in graphite-saturated conditions, N content in the alloy melt decreases with decrease in fO2 in graphite-undersaturated conditions. However, at any given fO2, N in graphite-undersaturated alloys is substantially greater than graphite-saturated alloys. \(D_N^{{\mathrm{alloy}}/{\mathrm{silicate}}}\) for graphite-saturated alloys has been determined only in N-undersaturated conditions, therefore, N content in the alloys from only two previous studies10,11 was compared with the data from the present study because of similar N contents in the starting mixtures. Error bars represent ±1-σ deviation based on the replicate electron microprobe analyses; where absent, the error bars are smaller than the symbol size.
Extended Data Fig. 5 \(D_N^{{\mathrm{alloy}}/{\mathrm{silicate}}}\) as a function of oxygen fugacity and (a) silicon content in the alloy and (b) temperature.
a, In addition to the effect of fO2, when Si content in the alloy melt and FeO content in the silicate melt are coupled to each other, incorporation of Si into the alloy melt on its own has a strong negative effect on N content in the alloy at a similar logfO2 (~IW–4; here shown by grey rectangle). A similar effect has been observed in a previous study11 albeit at a higher logfO2 (~IW–2.5) because in graphite-saturated alloys, Si expels N from the alloy melt even at low concentrations (as low as 0.1 wt.% Si). b, In contrast to the observations of previous studies11,12 in graphite-saturated conditions, temperature does not have any discernible effect on \(D_N^{{\mathrm{alloy}}/{\mathrm{silicate}}}\) in the limited temperature range explored in this study. Error bars represent ±1-σ deviation obtained by propagation of ±1-σ deviation on N content in the alloy and silicate melts; where absent, the error bars are smaller than the symbol size.
Extended Data Fig. 6 Comparison between nitrogen content in the final products and starting mixtures.
Similar to the observation in all previous studies that estimated \(D_N^{{\mathrm{alloy}}/{\mathrm{silicate}}}\) in graphite capsules10,11,12,13,22,27, the reconstructed N content in the final products of this study in MgO capsules is less than the N content in the starting mixture. Mass balance suggests that the extent of recovery of initial N content lies in the range of ~50–85%. Loss of N has been explained by the storage of N in the pores of the capsule walls or diffusive loss across the capsule wall11,12. Error bars represent ±1-σ deviation obtained by propagation of ±1-σ deviation on N content in the alloy and silicate melts; where absent, the error bars are smaller than the symbol size.
Extended Data Fig. 7 Predicted \(D_{\mathrm{N}}^{{\mathrm{alloy}}/{\mathrm{silicate}}}\) using the parametrization developed in this study and comparison between the \(D_{\mathrm{N}}^{{\mathrm{alloy}}/{\mathrm{silicate}}}\) values predicted by this study and two previous studies.
a, Predicted \(D_{\mathrm{N}}^{{\mathrm{alloy}}/{\mathrm{silicate}}}\) using the parametrization developed in this study plotted against experimentally determined \(D_{\mathrm{N}}^{{\mathrm{alloy}}/{\mathrm{silicate}}}\) for Fe-Ni-N±C±S±Si alloy melt-silicate melt equilibration. ‘n’ represents the total number of experiments that were used to calibrate the parameterized equation in this study. Solid line represents 1:1 fit while the dashed lines represent error within a factor of 2. b, The predicted \(D_{\mathrm{N}}^{{\mathrm{alloy}}/{\mathrm{silicate}}}\) values in C-free and graphite-undersaturated alloys, in agreement with the experimental data of this study, are an order of magnitude higher than the predicted \(D_{\mathrm{N}}^{{\mathrm{alloy}}/{\mathrm{silicate}}}\) values of graphite-saturated alloys at logfO2> IW–5 and the gap between the predicted values decreases with decrease in fO2 (see Methods).
Extended Data Fig. 8 The effects of (a) the extent of atmosphere retention after final-step of Earth’s accretion and (b) the extent of emulsification of the impactor’s core in the target’s magma ocean on N budget of the BSE.
For scenario 10 (as defined in Fig. 5a) and 50 ppm of accreted N, it can be seen that N budget of the present-day BSE can be satisfied for ~60–100 % of atmosphere retention on Earth after its final accretion event (a) and for ~50–100 % emulsification of the impactor’s core in the target’s MO (b) during every step of accretion. Lesser extent of final-stage atmospheric retention or lesser degree of emulsification of the impactor’s core would require higher amount of accreted N (>50 ppm) in the seed planetary embryos (here Mars-sized) to satisfy the N budget of the present-day BSE.
Extended Data Fig. 9 Comparison between the calculated nitrogen solubility constants (SN) from this study and the fixed values used in previous studies.
The effective solubility constants for N vary with the size of protoplanetary bodies with variations in the range of an order of magnitude from a Vesta-sized to a Mars-sized protoplanet. Therefore, using a fixed solubility constant, as used in previous studies3,4,10 to calculate the solubilities of N in magma oceans for rocky bodies having different sizes can give erroneous results.
Supplementary information
Supplementary Information
Supplementary Figs. 1–3 and Tables 1–7.
Rights and permissions
About this article
Cite this article
Grewal, D.S., Dasgupta, R., Hough, T. et al. Rates of protoplanetary accretion and differentiation set nitrogen budget of rocky planets. Nat. Geosci. 14, 369–376 (2021). https://doi.org/10.1038/s41561-021-00733-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-021-00733-0
This article is cited by
-
Nitrogen isotope evidence for Earth’s heterogeneous accretion of volatiles
Nature Communications (2022)
-
Internal dynamics of magma ocean and its linkage to atmospheres
Acta Geochimica (2022)
-
Late veneer and the origins of volatiles of Earth
Acta Geochimica (2022)
-
Light elements in the Earth’s core
Nature Reviews Earth & Environment (2021)
-
Numerous chondritic impactors and oxidized magma ocean set Earth’s volatile depletion
Scientific Reports (2021)