Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A pole-to-equator ocean overturning circulation on Enceladus


Enceladus is believed to have a saltwater global ocean, heated at the ocean–core interface and losing heat to the floating ice shell above. This configuration suggests an important role for vertical convection. The ice shell has dramatic meridional thickness variations that, in steady state, must be sustained by the ocean circulation against processes acting to remove these anomalies. This could be achieved through spatially separated regions of freezing and melting at the ocean–ice interface. Here, we use an idealized, dynamical ocean model forced by an observationally guided density flux at the ocean–ice interface to argue that Enceladus’s interior ocean should support a meridional overturning circulation. This circulation establishes an interior density structure that is more complex than in studies that have focused only on vertical convection, including a shallow freshwater lens in the polar regions. Spatially separated sites of ice formation and melt enable Enceladus to sustain significant vertical and horizontal stratification, which influences interior heat transport and is critical for understanding the relationship between a global ocean and the planetary energy budget. On the basis of our model, the presence of low salinity layers near the polar ocean–ice interface implies the ocean’s bulk salinity could substantially exceed values inferred from Cassini plume samples.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Diagram of Enceladus-like ocean and circulation.
Fig. 2: Steady-state distribution of density layers in the control run.
Fig. 3: Characteristics of the control simulation.
Fig. 4: Phase diagram depicting isopycnal slope.

Data availability

The data used in this article are available in the Caltech Data Repository:

Code availability

A copy of code is stored in the Caltech Data Repository:


  1. 1.

    Glein, C. R., Postberg, F. & Vance, S. D. The Geochemistry of Enceladus: Composition and Controls (Univ. Arizona Press, 2019).

  2. 2.

    Choblet, G. et al. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1, 841–847 (2017).

    Article  Google Scholar 

  3. 3.

    Spencer, J. R. et al. Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311, 1401–1405 (2006).

    Article  Google Scholar 

  4. 4.

    Collins, G. C. & Goodman, J. C. Enceladus’ south polar sea. Icarus 189, 72–82 (2007).

    Article  Google Scholar 

  5. 5.

    McKinnon, W. B. Effect of Enceladus’s rapid synchronous spin on interpretation of Cassini gravity. Geophys. Res. Lett. 42, 2137–2143 (2015).

    Article  Google Scholar 

  6. 6.

    Čadek, O. et al. Long-term stability of Enceladus’ uneven ice shell. Icarus 319, 476–484 (2019).

  7. 7.

    Beuthe, M., Rivoldini, A. & Trinh, A. Enceladus’s and Dione’s floating ice shells supported by minimum stress isostasy. Geophys. Res. Lett. 43, 10088–10096 (2016).

    Article  Google Scholar 

  8. 8.

    Postberg, F. et al. Macromolecular organic compounds from the depths of Enceladus. Nature 558, 564–568 (2018).

    Article  Google Scholar 

  9. 9.

    Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017).

    Article  Google Scholar 

  10. 10.

    Postberg, F. et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009).

    Article  Google Scholar 

  11. 11.

    Vance, S. & Goodman, J. in Europa (eds Pappalardo, R. T. et al.) 459–482 (Univ. Arizona Press, 2009).

  12. 12.

    Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).

    Article  Google Scholar 

  13. 13.

    Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    Article  Google Scholar 

  14. 14.

    Marshall, J. & Radko, T. Residual-mean solutions for the Antarctic circumpolar current and its associated overturning circulation. J. Phys. Oceanogr. 33, 2341–2354 (2003).

    Article  Google Scholar 

  15. 15.

    Groeskamp, S. et al. The water mass transformation framework for ocean physics and biogeochemistry. Annu. Rev. Mar. Sci. 11, 271–305 (2019).

    Article  Google Scholar 

  16. 16.

    Soderlund, K. M. et al. Ocean dynamics of outer solar system satellites. Geophys. Res. Lett. 46, 8700–8710 (2019).

    Article  Google Scholar 

  17. 17.

    Goodman, J. C. et al. Glacial flow of floating marine ice in ‘Snowball Earth’. J. Geophys. Res. 108, 3308 (2003).

    Article  Google Scholar 

  18. 18.

    Zhu, P. et al. The influence of meridional ice transport on Europa’s ocean stratification and heat content. Geophys. Res. Lett. 44, 5969–5977 (2017).

    Article  Google Scholar 

  19. 19.

    Soderlund, K. M., Schmidt, B. E., Wicht, J. & Blankenship, D. D. Ocean-driven heating of Europa’s icy shell at low latitudes. Nat. Geosci. 7, 16–19 (2014).

    Article  Google Scholar 

  20. 20.

    Jansen, M. F. The turbulent circulation of a snowball Earth ocean. J. Phys. Oceanogr. 46, 1917–1933 (2016).

    Article  Google Scholar 

  21. 21.

    Cullum, J., Stevens, D. P. & Joshi, M. M. Importance of ocean salinity for climate and habitability. Proc. Natl Acad. Sci. USA 113, 4278–4283 (2016).

    Article  Google Scholar 

  22. 22.

    Vance, S. D. et al. Geophysical investigations of habitability in ice-covered ocean worlds. J. Geophys. Res. Planets 123, 180–205 (2018).

    Article  Google Scholar 

  23. 23.

    Uchida, T. et al. Vertical eddy iron fluxes support primary production in the open southern ocean. Nat. Commun. 11, 1125 (2020).

    Article  Google Scholar 

  24. 24.

    Choukroun, M. & Sotin, C. Is Titan’s shape caused by its meteorology and carbon cycle? Geophys. Res. Lett. 39, L04201 (2012).

    Article  Google Scholar 

  25. 25.

    Durante, D., Hemingway, D. J., Racioppa, P., Iess, L. & Stevenson, D. J. Titan’s gravity field and interior structure after Cassini. Icarus 326, 123–132 (2019).

    Article  Google Scholar 

  26. 26.

    Turtle, E. P. et al. In Proc. European Planetary Science Congress 2017. Vol. 11, EPSC2017-349-4 (European Planetary Science Congress, 2017).

  27. 27.

    Grasset, O. et al. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78, 1–21 (2013).

    Article  Google Scholar 

  28. 28.

    Buffington, B. et al. In Proc. 68th International Astronautical Congress. 41642 (California Institute of Technology, 2017).

  29. 29.

    Thompson, A. F., Hines, S. K. & Adkins, J. F. A Southern Ocean mechanism for the interhemispheric coupling and phasing of the bipolar seesaw. J. Clim. 32, 4347–4365 (2019).

    Article  Google Scholar 

  30. 30.

    Lewis, E. L. & Perkin, R. G. Ice pumps and their rates. J. Geophys. Res. Oceans 91, 11756–11762 (1986).

    Article  Google Scholar 

  31. 31.

    Speer, K., Rintoul, S. R. & Sloyan, B. The diabatic Deacon cell. J. Phys. Oceanogr. 30, 3212–3222 (2000).

    Article  Google Scholar 

  32. 32.

    Green, J. S. Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Q. J. R. Meteorol. Soc. 96, 157–185 (1970).

    Article  Google Scholar 

  33. 33.

    Munk, W. H. Abyssal recipes. Deep Sea Res. Oceanogr. Abstr. 13, 707–730 (1966).

    Article  Google Scholar 

  34. 34.

    Gent, P. R. & McWilliams, J. C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990).

    Article  Google Scholar 

Download references


A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). This work was partially supported by JPL’s Strategic Research and Technology Development programme, and by the Icy Worlds node of NASA’s Astrobiology Institute (13-13NAI7 2-0024). ©2020. All rights reserved. A.F.T. was supported by the David and Lucile Packard Foundation.

Author information




A.H.L., A.F.T. and S.D.V. conceived and designed the study. A.H.L. and A.F.T. wrote the code, ran the experiments and analysed results. A.H.L., A.F.T., S.T. and S.D.V. co-wrote the paper.

Corresponding author

Correspondence to Ana H. Lobo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editors: Tamara Goldin; Stefan Lachowycz. Nature Geoscience thanks Louis-Alexandre Couston and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1 and 2, Figs. 1–3 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lobo, A.H., Thompson, A.F., Vance, S.D. et al. A pole-to-equator ocean overturning circulation on Enceladus. Nat. Geosci. 14, 185–189 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing