Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The future lifespan of Earth’s oxygenated atmosphere

Abstract

Earth’s modern atmosphere is highly oxygenated and is a remotely detectable signal of its surface biosphere. However, the lifespan of oxygen-based biosignatures in Earth’s atmosphere remains uncertain, particularly for the distant future. Here we use a combined biogeochemistry and climate model to examine the likely timescale of oxygen-rich atmospheric conditions on Earth. Using a stochastic approach, we find that the mean future lifespan of Earth’s atmosphere, with oxygen levels more than 1% of the present atmospheric level, is 1.08 ± 0.14 billion years (1σ). The model projects that a deoxygenation of the atmosphere, with atmospheric O2 dropping sharply to levels reminiscent of the Archaean Earth, will most probably be triggered before the inception of moist greenhouse conditions in Earth’s climate system and before the extensive loss of surface water from the atmosphere. We find that future deoxygenation is an inevitable consequence of increasing solar fluxes, whereas its precise timing is modulated by the exchange flux of reducing power between the mantle and the ocean–atmosphere–crust system. Our results suggest that the planetary carbonate–silicate cycle will tend to lead to terminally CO2-limited biospheres and rapid atmospheric deoxygenation, emphasizing the need for robust atmospheric biosignatures applicable to weakly oxygenated and anoxic exoplanet atmospheres and highlighting the potential importance of atmospheric organic haze during the terminal stages of planetary habitability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic model structure.
Fig. 2: Evolution of atmospheric chemistry in our stochastic analysis.
Fig. 3: The future lifespan of Earth’s oxygenated atmosphere.
Fig. 4: The coupled evolution of Earth’s biosphere and atmospheric chemistry.

Data availability

The data obtained by the statistical analysis are available to download at https://doi.org/10.6084/m9.figshare.13487487.v1. Source data are provided with this paper.

Code availability

Our Fortran source code is available at https://github.com/kazumi-ozaki/lifespan.

References

  1. 1.

    Fujii, Y. et al. Exoplanet biosignatures: observational prospects. Astrobiology 18, 739–778 (2018).

    Article  Google Scholar 

  2. 2.

    An Astrobiology Strategy for the Search for Life in the Universe (National Academies, 2019).

  3. 3.

    The LUVOIR Team. The LUVOIR Mission Concept Study Final Report. Available at https://asd.gsfc.nasa.gov/luvoir/reports/ (2019).

  4. 4.

    Meadows, V. S. et al. Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18, 630–662 (2018).

    Article  Google Scholar 

  5. 5.

    Schwieterman, E. W. et al. Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18, 663–708 (2018).

    Article  Google Scholar 

  6. 6.

    Meadows, V. Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 17, 1022–1052 (2017).

    Article  Google Scholar 

  7. 7.

    Wordsworth, R. & Pierrehumbert, R. Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys. J. Lett. 785, L20 (2014).

    Article  Google Scholar 

  8. 8.

    Gao, P., Hu, R., Robinson, T. D., Li, C. & Yung, Y. L. Stability of CO2 atmospheres on desiccated M dwarf exoplanets. Astrophys. J. 806, 249 (2015).

    Article  Google Scholar 

  9. 9.

    Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of m dwarfs. Astrobiology 15, 119–143 (2015).

    Article  Google Scholar 

  10. 10.

    Prentice, I. C. et al. in Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) 183–238 (IPCC, Cambridge Univ. Press, 2001).

  11. 11.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  Google Scholar 

  12. 12.

    Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. USA 113, 9704–9709 (2016).

    Article  Google Scholar 

  13. 13.

    Krause, A. J. et al. Stepwise oxygenation of the paleozoic atmosphere. Nat. Commun. 9, 4081 (2018).

    Article  Google Scholar 

  14. 14.

    Lenton, T. M. Gaia and natural selection. Nature 394, 439–447 (1998).

    Article  Google Scholar 

  15. 15.

    Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. First plants cooled the Ordovician. Nat. Geosci. 5, 86–89 (2012).

    Article  Google Scholar 

  16. 16.

    Caldeira, K. & Kasting, J. F. The life span of the biosphere revisited. Nature 360, 721–723 (1992).

    Article  Google Scholar 

  17. 17.

    Lovelock, J. E. & Whitfield, M. Life span of the biosphere. Nature 296, 561–563 (1982).

    Article  Google Scholar 

  18. 18.

    Franck, S., Bounama, C. & von Bloh, W. Causes and timing of future biosphere extinctions. Biogeosciences 3, 85–92 (2006).

    Article  Google Scholar 

  19. 19.

    Franck, S., Kossacki, K. J., Von Bloth, W. & Bounama, C. Long-term evolution of the global carbon cycle: historic minimum of global surface temperature at present. Tellus B 54, 325–343 (2002).

    Google Scholar 

  20. 20.

    O’Malley-James, J. T., Greaves, J. S., Raven, J. A. & Cockell, C. S. Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. Int. J. Astrobiol. 12, 99–112 (2013).

    Article  Google Scholar 

  21. 21.

    Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  Google Scholar 

  22. 22.

    Kasting, J. F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).

    Article  Google Scholar 

  23. 23.

    Leconte, J., Forget, F., Charnay, B., Wordsworth, R. & Pottier, A. Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504, 268–271 (2013).

    Article  Google Scholar 

  24. 24.

    Claire, M. W., Catling, D. C. & Zahnle, K. J. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006).

    Article  Google Scholar 

  25. 25.

    Reinhard, C. T. et al. Oceanic and atmospheric methane cycling in the cGENIE Earth system model. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2020-32 (2020).

  26. 26.

    Byrne, B. & Goldblatt, C. Radiative forcing at high concentrations of well-mixed greenhouse gases. Geophys. Res. Lett. 41, 152–160 (2014).

    Article  Google Scholar 

  27. 27.

    Holland, H. D. Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

    Article  Google Scholar 

  28. 28.

    Arney, G. et al. The pale orange dot: the spectrum and habitability of hazy Archean earth. Astrobiology 16, 873–899 (2016).

    Article  Google Scholar 

  29. 29.

    Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean earth. Astrobiology 8, 1127–1137 (2008).

    Article  Google Scholar 

  30. 30.

    Trainer, M. G. et al. Haze aerosols in the atmosphere of early Earth: manna from heaven. Astrobiology 4, 409–419 (2004).

    Article  Google Scholar 

  31. 31.

    Jenkins, J. M. et al. Discovery and validation of Kepler-452b: a 1.6R super earth exoplanet in the habitable zone of a G2 star. Astron. J. 150, 56 (2015).

    Article  Google Scholar 

  32. 32.

    Mullally, F., Thompson, S. E., Coughlin, J. L., Burke, C. J. & Rowe, J. F. Kepler’s Earth-like planets should not be confirmed without independent detection: the Case of Kepler-452b. Astron. J. 155, 210 (2018).

    Article  Google Scholar 

  33. 33.

    Mackenzie, F. T. & Kump, L. R. Reverse weathering, clay mineral formation, and oceanic element cycles. Science 270, 586–586 (1995).

    Article  Google Scholar 

  34. 34.

    Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).

    Article  Google Scholar 

  35. 35.

    Wolf, E. T., Shields, A. L., Kopparapu, R. K., Haqq-Misra, J. & Toon, O. B. Constraints on climate and habitability for earth-like exoplanets determined from a general circulation model. Astrophys. J. 837, 107 (2017).

    Article  Google Scholar 

  36. 36.

    Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).

    Article  Google Scholar 

  37. 37.

    Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    Article  Google Scholar 

  38. 38.

    Reinhard, C. T., Olson, S. L., Schwieterman, E. W. & Lyons, T. W. False negatives for remote life detection on ocean-bearing planets: lessons from the early earth. Astrobiology 17, 287–297 (2017).

    Article  Google Scholar 

  39. 39.

    Schwieterman, E.W., Reinhard, C.T., Olson, S.L., Lyons, T.W. The importance of UV capabilities for identifying exoplanets with next generation space telescopes. [white paper submitted in response to the solicitation of feedback for the NAS Astrobiology Science Strategy for the Search for Life in the Universe 2018 by the National Academy of Sciences] (2018).

  40. 40.

    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Phil. Trans. R. Soc. B 361, 931–950 (2006).

    Article  Google Scholar 

  41. 41.

    Eguchi, J., Seales, J. & Dasgupta, R. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nat. Geosci. 13, 71–76 (2020).

    Article  Google Scholar 

  42. 42.

    Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012).

    Article  Google Scholar 

  43. 43.

    Kadoya, S., Catling, D. C., Nicklas, R. W., Puchtel, I. S. & Anbar, A. D. Mantle data imply a decline of oxidizable volcanic gases could have triggered the Great Oidation. Nat. Commun. 11, 2774 (2020).

    Article  Google Scholar 

  44. 44.

    Lee, C.-T. A. et al. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci. 9, 417–424 (2016).

    Article  Google Scholar 

  45. 45.

    Ozaki, K., Reinhard, C. T. & Tajika, E. A sluggish mid-Proterozoic biosphere and its effect on Earth’s redox balance. Geobiology 17, 3–11 (2019).

    Article  Google Scholar 

  46. 46.

    Ozaki, K., Tajika, E., Hong, P. K., Nakagawa, Y. & Reinhard, C. T. Effects of primitive photosynthesis on Earth’s early climate system. Nat. Geosci. 11, 55–59 (2018).

    Article  Google Scholar 

  47. 47.

    Kasting, J. F. Earth’s early atmosphere. Science 259, 920–926 (1993).

    Article  Google Scholar 

  48. 48.

    Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

    Article  Google Scholar 

  49. 49.

    Laakso, T. A. & Schrag, D. P. Limitations on limitation. Glob. Biogeochem. Cycles 32, 486–496 (2018).

    Article  Google Scholar 

  50. 50.

    Laakso, T. A. & Schrag, D. P. Methane in the Precambrian atmosphere. Earth Planet. Sci. Lett. 522, 48–54 (2019).

    Article  Google Scholar 

  51. 51.

    Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).

    Article  Google Scholar 

  52. 52.

    Hein, M. & Sand-Jensen, K. CO2 increases oceanic primary production. Nature 388, 526–527 (1997).

    Article  Google Scholar 

  53. 53.

    Riebesell, U., Wolf-Gladrow, D. A. & Smetacek, V. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361, 249–251 (1993).

    Article  Google Scholar 

  54. 54.

    Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006).

    Article  Google Scholar 

  55. 55.

    Galbraith, E. D. & Eggleston, S. A lower limit to atmospheric CO2 concentrations over the past 800,000 years. Nat. Geosci. 10, 295–298 (2017).

    Article  Google Scholar 

  56. 56.

    Pagani, M., Caldeira, K., Berner, R. & Beerling, D. J. The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature 460, 85–88 (2009).

    Article  Google Scholar 

  57. 57.

    Beerling, D., Berner, R. A., Mackenzie, F. T., Harfoot, M. B. & Pyle, J. A. Methane and the CH4 related greenhouse effect over the past 400 million years. Am. J. Sci. 309, 97–113 (2009).

    Article  Google Scholar 

  58. 58.

    Canfield, D. E. The evolution of the earth surface sulfur reservoir. Am. J. Sci. 304, 839–861 (2004).

    Article  Google Scholar 

  59. 59.

    Lécuyer, C. & Ricard, Y. Long-term fluxes and budget of ferric iron: implication for the redox states of the Earth’s mantle and atmosphere. Earth Planet. Sci. Lett. 165, 197–211 (1999).

    Article  Google Scholar 

  60. 60.

    Catling, D. C. & Kasting, J. F. Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge Univ. Press, 2017).

  61. 61.

    Williams, D. M. & Kasting, J. F. Habitable planets with high obliquities. Icarus 129, 254–267 (1997).

    Article  Google Scholar 

  62. 62.

    Pierrehumbert, R. T., Abbot, D. S., Voigt, A. & Koll, D. Climate of the neoproterozoic. Annu. Rev. Earth Planet. Sci. 39, 417–460 (2011).

    Article  Google Scholar 

  63. 63.

    Goldblatt, C., Robinson, T. D., Zahnle, K. J. & Crisp, D. Low simulated radiation limit for runaway greenhouse climates. Nat. Geosci. 6, 661–667 (2013).

    Article  Google Scholar 

  64. 64.

    Kopparapu, R. K. et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013).

    Article  Google Scholar 

  65. 65.

    Abe, Y., Abe-Ouchi, A., Sleep, N. H. & Zahnle, K. J. Habitable zone limits for dry planets. Astrobiology 11, 443–460 (2011).

    Article  Google Scholar 

  66. 66.

    Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc. Natl Acad. Sci. USA 115, 4105–4110 (2018).

    Article  Google Scholar 

  67. 67.

    Krissansen-Totton, J. & Catling, D. C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 8, 15423 (2017).

    Article  Google Scholar 

  68. 68.

    Graham, R. J. & Pierrehumbert, R. Thermodynamic and energetic limits on continental silicate weathering strongly impact the climate and habitability of wet, rocky worlds. Astrophys. J. 896, 115 (2020).

    Article  Google Scholar 

  69. 69.

    Winnick, M. J. & Maher, K. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback. Earth Planet. Sci. Lett. 485, 111–120 (2018).

    Article  Google Scholar 

  70. 70.

    Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Goddéris, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259-1283, https://doi.org/10.2475/09.2014.01 (2014).

  71. 71.

    Ibarra, D. E. et al. Modeling the consequences of land plant evolution on silicate weathering. Am. J. Sci. 319, 1–43 (2019).

    Article  Google Scholar 

  72. 72.

    Moulton, K. L. & Berner, R. A. Quantification of the effect of plants on weathering: studies in Iceland. Geology 26, 895–898 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Tajika, Y. Sekine, S. Kadoya, Y. Watanabe, G. Arney, S. D. Domagal-Goldman and E. W. Schwieterman for helpful discussions. K.O. acknowledges support from the NASA Postdoctoral Program at the NASA Astrobiology Program, administered by Universities Space Research Association under contact with NASA. This work was supported by JSPS KAKENHI grant number JP20K04066. C.T.R. acknowledges support from the NASA Astrobiology Institute (grant number 13-13NAI7_2-0027). We acknowledge the NASA Nexus for Exoplanet System Science (NExSS) (grant number 80NSSC19KO461).

Author information

Affiliations

Authors

Contributions

K.O. and C.T.R. designed the study. K.O. constructed the model and performed experiments. K.O. and C.T.R. analysed the results and wrote the paper. Both authors discussed and interpreted the results.

Corresponding author

Correspondence to Kazumi Ozaki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Alexander Krause and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Tamara Goldin; Rebecca Neely.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Empirical relationship for NPP limitations assumed in the model.

a, The temperature dependence of terrestrial primary production (VT)48. b, The CO2 dependence of terrestrial primary production (VCO2). c, The UV irradiance dependence of terrestrial primary production (in terms of atmospheric O2) for different assumed values of cUV between 10−2.5 and 10−1.5 (fUV). d, The temperature dependence of marine primary producers (fTocn)24. The grey area represents the ranges for these factors that are explored by the stochastic approach.

Extended Data Fig. 2 Evolution of outgassing and erosion factors assumed in this study.

a, The outgassing factor, fG. b, The erosion factor, fR. For the Phanerozoic, the time evolution of the original model48 was adopted, whereas the future evolution is explored by changing the amplitude and cycle (equations (34) and (35)). The grey region represents uncertain ranges for those factors which are explored by the stochastic approach.

Extended Data Fig. 3 Parameter ranges used in the Monte Carlo simulations.

Uniform prior distributions were assumed, except for uncertainties in OLR and TOA for which Gaussian probability density functions were assumed (1σ is listed here).

Extended Data Fig. 4 The typical simulation results showing the evolution of Earth’s biogeochemistry.

a, Solar luminosity (normalized by modern value). b, The chemical composition of the atmosphere. Blue, green, and orange lines represent O2, CO2 and CH4, respectively. c, Global surface temperature. d, Global net primary production (NPP). Solid line denotes the reference run (n = 0.73, m = 1, aG = aR = Jsorg = Jspy = JsFe-ox = Jscarb = JdCO2 = JdH2S = Jdred = ΔOLR = ΔTOA = 0, G* = 1250 Emol, C* = 5000 Emol, PYR* = 200 Emol, GYP* = 200 Emol, cUV = 0.01, Tref = 1400 K, Trefland = 25 °C, LIFE = 0.15, FERT = 0.4, ACT = 0.09, Pmin = 10 ppmv, RUNsil = 0.038, (Corg/Porg)anoxic = 20 × (Corg/Porg)oxic), whereas dashed (fG = 1, fR = 1), dotted (w/o land plants), dashed-dotted ((Corg/Porg)anoxic = 2 × (Corg/Porg)oxic), and gray (Constant solar luminosity) lines represent the sensitivity experiments (Parameters were set at the reference case, otherwise noted.). Phan = Phanerozoic. Source data

Extended Data Fig. 5 The sensitivity of Earth’s biogeochemical evolution to the terrestrial weatherability.

Same as Extended Data Fig. 4, whereas dashed (ACT = 0.135) and dotted (ACT = 0.05) lines represent the sensitivity experiments (Parameters were set at the reference case, otherwise noted.). The future lifespan is largely insensitive to the uncertainty in the terrestrial weaherability because of the tradeoff between the impact of weatherability on atmospheric CO2 levels, global climate, and biospheric responses. Phan = Phanerozoic. Source data

Extended Data Fig. 6 The default stochastic simulations showing the evolution of Earth’s biogeochemistry.

a, Solar luminosity (normalized by modern value). b, The chemical composition of the atmosphere. Blue, green, and orange lines represent O2, CO2 and CH4, respectively. c, Global surface temperature. d, Global net primary production (NPP). Phan = Phanerozoic.

Extended Data Fig. 7 The default Monte Carlo simulations showing the response of the net primary production (NPP).

Blue and green lines represent oceanic and terrestrial NPP, respectively.

Extended Data Fig. 8 The default Monte Carlo simulations showing the response of model reservoir sizes.

a, Oceanic P concentration, (b) oceanic SO42− level, (c) crustal organic carbon, (d) crustal carbonate carbon, (e) crustal pyrite sulphur, (f) crustal gypsum sulphur.

Extended Data Fig. 9 Evolution of atmospheric chemistry without terrestrial biosphere (color lines) compared with the default analysis (grey).

a, Atmospheric O2. b, CH4. c, CO2. d, CH4/CO2.

Extended Data Fig. 10 The dependency of the future lifespan of Earth’s oxygenated atmosphere (>1% PAL) on a series of key biogeochemical parameters.

a, Temperature factor controlling the activity of marine biosphere, Tref, (b) temperature factor controlling the activity level of terrestrial biosphere, Trefland, (c) minimum CO2 level for land plants, Pmin, (d) runoff factor, RUNsil, (e) activation energy factor, ACT, (f) Corg/Porg ratio of the buried anoxic sediments, (Corg/Porg)anoxic, (g) CO2 fertilization factor for land plants, FERT, (h) weathering factor for no-vegetation area, LIFE, (i) UV factor for terrestrial biosphere, cUV. The future lifespan is largely insensitive to these uncertain parameters (cf. Fig. 3b).

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1–4 and Discussion.

Source data

Source Data Fig. 3

Numerical data for the future lifespan of Earth’s oxygenated atmosphere.

Source Data Extended Data Fig. 4

Numerical simulation data for the reference run and sensitivity experiments.

Source Data Extended Data Fig. 5

Numerical simulation data for the reference run and sensitivity experiments.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ozaki, K., Reinhard, C.T. The future lifespan of Earth’s oxygenated atmosphere. Nat. Geosci. 14, 138–142 (2021). https://doi.org/10.1038/s41561-021-00693-5

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing