Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene

Abstract

The middle Miocene climate transition (~14 million years ago) was characterized by a dramatic increase in the volume of the Antarctic ice sheet. The driving mechanism of this transition remains under discussion, with hypotheses including circulation changes, declining carbon dioxide in the atmosphere and orbital forcing. Southern Ocean records of planktic foraminiferal Mg/Ca have previously been interpreted to indicate a cooling of 6–7 °C and a decrease in salinity that preceded Antarctic cryosphere expansion by up to ~300,000 years. This interpretation has led to the hypothesis that changes in meridional heat and vapour transport along with an early thermal isolation of Antarctica from extrapolar climates played a fundamental role in triggering ice growth. Here we revisit the middle Miocene Southern Ocean temperature evolution using clumped isotope and lipid biomarker temperature proxies. Our records indicate that the Southern Ocean cooling and the associated salinity decrease occurred in phase with the expansion of the Antarctic ice sheet. We demonstrate that the timing and magnitude of the Southern Ocean temperature change seen in previous reconstructions can be explained if we consider pH as an additional, non-thermal, control on foraminiferal Mg/Ca ratios. Therefore, our new dataset challenges the view of a thermal isolation of Antarctica preceding ice sheet expansion, and suggests a strong coupling between Southern Ocean conditions and Antarctic ice volume in times of declining atmospheric carbon dioxide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Site map and palaeogeographic reconstruction.
Fig. 2: Benthic δ18O and multiproxy temperature records from ODP Site 1171 located on the South Tasman Rise.
Fig. 3: Middle Miocene carbon cycle changes.
Fig. 4: Southern Ocean climate evolution during the MMCT.

Similar content being viewed by others

Data availability

The clumped isotope and TEX86 temperature data that support the findings of this study are available in the Supplementary Information and at Pangaea (https://doi.org/10.1594/PANGAEA.919353, https://doi.org/10.1594/PANGAEA.919351). The full raw isotope data is published on the EarthChem Database (https://doi.org/10.26022/IEDA/111547).

References

  1. Ji, S. C. et al. A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene. Earth Planet. Sci. Lett. 499, 134–144 (2018).

    Google Scholar 

  2. Sosdian, S. M. et al. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy. Earth Planet. Sci. Lett. 498, 362–376 (2018).

    Google Scholar 

  3. Super, J. R. et al. North Atlantic temperature and pCO2 coupling in the early–middle Miocene. Geology 46, 519–522 (2018).

    Google Scholar 

  4. Flower, B. P. & Kennett, J. P. Middle Miocene ocean-climate transition—high-resolution oxygen and carbon isotopic records from Deep-Sea Drilling Project Site 588A, Southwest Pacific. Paleoceanography 8, 811–843 (1993).

    Google Scholar 

  5. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Google Scholar 

  6. de Boer, B., van de Wal, R. S. W., Bintanja, R., Lourens, L. J. & Tuenter, E. Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records. Ann. Glaciol. 51, 23–33 (2010).

    Google Scholar 

  7. Lear, C. H., Mawbey, E. M. & Rosenthal, Y. Cenozoic benthic foraminiferal Mg/Ca and Li/Ca records: toward unlocking temperatures and saturation states. Paleoceanography 25, PA4215 (2010).

  8. Frigola, A., Prange, M. & Schulz, M. Boundary conditions for the middle Miocene climate transition (MMCT v1.0). Geosci. Model Dev. 11, 1607–1626 (2018).

    Google Scholar 

  9. Shevenell, A. E., Kennett, J. P. & Lea, D. W. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305, 1766–1770 (2004).

    Google Scholar 

  10. Kuhnert, H., Bickert, T. & Paulsen, H. Southern Ocean frontal system changes precede Antarctic ice sheet growth during the middle Miocene. Earth Planet. Sci. Lett. 284, 630–638 (2009).

    Google Scholar 

  11. Holbourn, A., Kuhnt, W., Schulz, M. & Erlenkeuser, H. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438, 483–487 (2005).

    Google Scholar 

  12. Gray, W. R. & Evans, D. Nonthermal influences on Mg/Ca in planktonic foraminifera: a review of culture studies and application to the Last Glacial Maximum. Paleoceanogr. Paleoclimatol. 34, 306–315 (2019).

    Google Scholar 

  13. Holland, K. et al. Constraining multiple controls on planktic foraminifera Mg/Ca. Geochim. Cosmochim. Acta 273, 116–136 (2020).

    Google Scholar 

  14. Exon, N. F. et al. in Proc. Ocean Drilling Program Initial Reports Vol. 189, Ch. 6 (ODP, 2001).

  15. Ghosh, P. et al. 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Acta 70, 1439–1456 (2006).

    Google Scholar 

  16. Peral, M. et al. Updated calibration of the clumped isotope thermometer in planktonic and benthic foraminifera. Geochim. Cosmochim. Acta 239, 1–16 (2018).

    Google Scholar 

  17. Leutert, T. J. et al. Sensitivity of clumped isotope temperatures in fossil benthic and planktic foraminifera to diagenetic alteration. Geochim. Cosmochim. Acta 257, 354–372 (2019).

    Google Scholar 

  18. Meinicke, N. et al. A robust calibration of the clumped isotopes to temperature relationship for foraminifers. Geochim. Cosmochim. Acta 270, 160–183 (2020).

    Google Scholar 

  19. Schouten, S., Hopmans, E. C., Schefuss, E. & Damsté, J. S. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002).

    Google Scholar 

  20. Schouten, S., Hopmans, E. C. & Damsté, J. S. S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54, 19–61 (2013).

    Google Scholar 

  21. Elling, F. J., Konneke, M., Mussmann, M., Greve, A. & Hinrichs, K. U. Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic Thaumarchaeal isolates. Geochim. Cosmochim. Acta 171, 238–255 (2015).

    Google Scholar 

  22. Heath, R. A. et al. A review of the physical oceanography of the seas around New Zealand—1982. N. Z. J. Mar. Freshwater Res. 19, 79–124 (1985).

    Google Scholar 

  23. Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci. Rev. 114, 325–368 (2012).

    Google Scholar 

  24. van Hinsbergen, D. J. J. et al. A paleolatitude calculator for paleoclimate studies. PLoS ONE 10, e0126946 (2015).

    Google Scholar 

  25. King, A. L. & Howard, W. R. Seasonality of foraminiferal flux in sediment traps at Chatham Rise, SW Pacific: implications for paleotemperature estimates. Deep-Sea Res. I 48, 1687–1708 (2001).

    Google Scholar 

  26. Pahnke, K., Zahn, R., Elderfield, H. & Schulz, M. 340,000-year centennial-scale marine record of Southern Hemisphere climatic oscillation. Science 301, 948–952 (2003).

    Google Scholar 

  27. Vázquez Riveiros, N. et al. Mg/Ca thermometry in planktic foraminifera: improving paleotemperature estimations for G. bulloides and N. pachyderma left. Geochem. Geophys. Geosyst. 17, 1249–1264 (2016).

    Google Scholar 

  28. Sangiorgi, F. et al. Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene. Nat. Commun. 9, 317 (2018).

    Google Scholar 

  29. Knorr, G. & Lohmann, G. Climate warming during Antarctic ice sheet expansion at the middle Miocene transition. Nat. Geosci. 7, 376–381 (2014).

    Google Scholar 

  30. Ho, S. L. & Laepple, T. Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean. Nat. Geosci. 9, 606–610 (2016).

    Google Scholar 

  31. Evans, D. & Müller, W. Deep time foraminifera Mg/Ca paleothermometry: nonlinear correction for secular change in seawater Mg/Ca. Paleoceanography 27, PA4205 (2012).

    Google Scholar 

  32. Lear, C. H. et al. Neogene ice volume and ocean temperatures: insights from infaunal foraminiferal Mg/Ca paleothermometry. Paleoceanography 30, 1437–1454 (2015).

    Google Scholar 

  33. Shevenell, A. E., Kennett, J. P. & Lea, D. W. Southern Ocean Middle Miocene ODP1171 Foraminifer Stable Isotope and Mg/Ca Data IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series no. 2006-061 (NOAA/NCDC, 2006).

  34. Gray, W. R. et al. The effects of temperature, salinity, and the carbonate system on Mg/Ca in Globigerinoides ruber (white): a global sediment trap calibration. Earth Planet. Sci. Lett. 482, 607–620 (2018).

    Google Scholar 

  35. Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21, PA2005 (2006).

    Google Scholar 

  36. Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

    Google Scholar 

  37. Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    Google Scholar 

  38. Studer, A. S. et al. Antarctic Zone nutrient conditions during the last two glacial cycles. Paleoceanography 30, 845–862 (2015).

    Google Scholar 

  39. Müller, R. D. et al. GPlates: building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261 (2018).

    Google Scholar 

  40. Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146, 226–250 (2016).

    Google Scholar 

  41. Bernasconi, S. M. et al. Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate-based standardization. Geochem. Geophys. Geosyst. 19, 2895–2914 (2018).

    Google Scholar 

  42. Kele, S. et al. Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: a study of travertines and tufas in the 6–95 °C temperature range. Geochim. Cosmochim. Acta 168, 172–192 (2015).

    Google Scholar 

  43. Kim, J. H. et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta 74, 4639–4654 (2010).

    Google Scholar 

  44. Greenop, R. et al. A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera. Clim. Past 13, 149–170 (2017).

    Google Scholar 

  45. Shevenell, A. E. & Kennett, J. P. in The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica Vol. 151 (eds Exon, N. et al.) 235–252 (AGU, 2004).

  46. Shevenell, A. E., Kennett, J. P. & Lea, D. W. Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: a Southern Ocean perspective. Geochem. Geophys. Geosyst. 9, Q02006 (2008).

    Google Scholar 

  47. Schmid, T. W., Radke, J. & Bernasconi, S. M. Clumped-Isotope Measurements on Small Carbonate Samples with a Kiel IV Carbonate Device and a MAT 253 Mass Spectrometer Application Note 30233 (ThermoFisher, 2012).

  48. Hu, B. et al. A modified procedure for gas-source isotope ratio mass spectrometry: the long-integration dual-inlet (LIDI) methodology and implications for clumped isotope measurements. Rapid Commun. Mass Spectrom. 28, 1413–1425 (2014).

    Google Scholar 

  49. Meckler, A. N., Ziegler, M., Millan, M. I., Breitenbach, S. F. M. & Bernasconi, S. M. Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements. Rapid Commun. Mass Spectrom. 28, 1705–1715 (2014).

    Google Scholar 

  50. Grauel, A. L. et al. Calibration and application of the ‘clumped isotope’ thermometer to foraminifera for high resolution climate reconstructions. Geochim. Cosmochim. Acta 108, 125–140 (2013).

    Google Scholar 

  51. Rodríguez-Sanz, L. et al. Penultimate deglacial warming across the Mediterranean Sea revealed by clumped isotopes in foraminifera. Sci. Rep. 7, 16572 (2017).

    Google Scholar 

  52. Schmid, T. W. & Bernasconi, S. M. An automated method for ‘clumped-isotope’ measurements on small carbonate samples. Rapid Commun. Mass Spectrom. 24, 1955–1963 (2010).

    Google Scholar 

  53. Piasecki, A. et al. Application of clumped isotope thermometry to benthic foraminifera. Geochem. Geophys. Geosyst. 20, 2082–2090 (2019).

    Google Scholar 

  54. Huntington, K. W. et al. Methods and limitations of ‘clumped’ CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. J. Mass Spectrom. 44, 1318–1329 (2009).

    Google Scholar 

  55. Auderset, A., Schmitt, M. & Martínez-García, A. Simultaneous extraction and chromatographic separation of n-alkanes and alkenones from glycerol dialkyl glycerol tetraethers via selective accelerated solvent extraction. Org. Geochem. 143, 103979 (2020).

    Google Scholar 

  56. Hopmans, E. C., Schouten, S. & Damsté, J. S. S. The effect of improved chromatography on GDGT-based palaeoproxies. Org. Geochem. 93, 1–6 (2016).

    Google Scholar 

  57. Huguet, C. et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org. Geochem. 37, 1036–1041 (2006).

    Google Scholar 

  58. Evans, D., Brierley, C., Raymo, M. E., Erez, J. & Müller, W. Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change. Earth Planet. Sci. Lett. 438, 139–148 (2016).

    Google Scholar 

  59. Cramwinckel, M. J. et al. Synchronous tropical and polar temperature evolution in the Eocene. Nature 559, 382–386 (2018).

    Google Scholar 

  60. Shackleton, N. J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. Colloq. Int. C.N.R.S. 219, 203–209 (1974).

    Google Scholar 

  61. Bemis, B. E., Spero, H. J., Bijma, J. & Lea, D. W. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13, 150–160 (1998).

    Google Scholar 

  62. Schmidt, G. A., Bigg, G. R. & Rohling, E. J. Global Seawater Oxygen-18 Database Version 1.22 (GISS, 1999); https://data.giss.nasa.gov/o18data/

Download references

Acknowledgements

We thank A. Shevenell, D. Evans, G. Foster and A. Fernandez Bremer for insightful discussions, and E. Alagoz, I. Heggstad and M. Schmitt for laboratory assistance. Furthermore, we thank all authors who shared their published data. This research used data and samples provided by the International Ocean Discovery Program (IODP) and its predecessor, the Ocean Drilling Program (ODP). The work was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 638467), the Trond Mohn Foundation and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

T.J.L. and A.N.M. initiated and designed the study. T.J.L. generated and analysed clumped isotope data under the oversight of A.N.M. A.A. and A.M.-G. contributed TEX86 data and their interpretation. GDGT measurements were performed by A.A. under the supervision of A.M.-G. All the authors contributed to the palaeoceanographic interpretation. T.J.L. wrote the paper with substantial contributions from A.N.M., A.A., A.M.-G. and S.M.

Corresponding author

Correspondence to Thomas J. Leutert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Methods 1 and 2, Discussions 1–4, Figs. 1–14 and Tables 1–3. In addition to providing additional information on site locality and hydrography, we present details on clumped isotope and lipid biomarker analyses as well as age models. Furthermore, we discuss potential non-thermal and diagenetic effects on the applied temperature proxies.

Supplementary Data

This file contains Supplementary Tables 4–9. Supplementary Table 4 contains the calculated standard reproducibilities for our stable isotope measurements. Supplementary Tables 5 and 6 show all the stable isotope standard and sample data, respectively. Supplementary Table 7 contains the calculated clumped isotope temperatures. Supplementary Table 8 contains the fractional abundances of GDGTs, calculated temperatures and indices, and Supplementary Table 9 lists the revised ages for boron isotope-based estimates of pH and CO2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leutert, T.J., Auderset, A., Martínez-García, A. et al. Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene. Nat. Geosci. 13, 634–639 (2020). https://doi.org/10.1038/s41561-020-0623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-020-0623-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing