Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glacial deep ocean deoxygenation driven by biologically mediated air–sea disequilibrium

A Publisher Correction to this article was published on 01 March 2021

An Author Correction to this article was published on 11 January 2021

This article has been updated

Abstract

Deep ocean deoxygenation inferred from proxies has been used to support the hypothesis that a lower atmospheric carbon dioxide during glacial times was due to an increase in the strength of the ocean’s biological pump. This relies on the assumption that surface ocean oxygen (O2) is equilibrated with the atmosphere such that any O2 deficiency observed in deep waters is a result of organic matter respiration, which consumes O2 and produces dissolved inorganic carbon. However, this assumption has been shown to be imperfect because of disequilibrium. Here we used an Earth system model tuned to a suite of observations, which reproduces the pattern of glacial-to-Holocene oxygenation change seen in proxy data, to show that disequilibrium plays an important role in glacial deep ocean deoxygenation. Using a novel decomposition method to track O2, we found a whole-ocean loss of 33 Pmol O2 from the preindustrial to the Last Glacial Maximum despite a 27 Pmol gain from the increased solubility due to cooler temperatures. This loss was driven by a biologically mediated O2 disequilibrium, which contributed 10% of the reduction of the O2 inventory from the solubility equilibrium in the preindustrial compared with 27% during the Last Glacial Maximum. Sea ice and iron fertilization were found to be the largest contributors to the Last Glacial Maximum deoxygenation, which occurs despite overall reduced production and respiration of organic matter in the glacial ocean. Our results challenge the notion that deep ocean glacial deoxygenation was caused by a stronger biological pump or more sluggish circulation, and instead highlight the importance and previously underappreciated role of O2 disequilibrium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of surface O2 saturation from a compilation of the World Ocean Atlas 2018 (WOA18 (ref. 48))+float data (University of Washington Argo O2 reanalysis49, and quality-controlled data from the SOCCOM (Southern Ocean Carbon and Climate Observations and Modeling) programme50).
Fig. 2: Schematic of the O2 decomposition used in this study.
Fig. 3: The components of O2 in the PIC and LGM relative to PIC.
Fig. 4: Response of PIC O2 components to LGM perturbations and assessment of the robustness of the response of O2 components to perturbations.
Fig. 5: Relationship between ΔO2, ΔAOU and biological carbon storage.

Similar content being viewed by others

Data availability

The model output that support the findings of this study are available from https://doi.org/10.5281/zenodo.4078981. World Ocean Atlas data were obtained from https://www.nodc.noaa.gov/OC5/woa18/, and float data from the SOCCOM website https://soccom.princeton.edu/.

Code availability

Model codes are available from https://github.com/samarkhatiwala/tmm.

Change history

References

  1. Broecker, W. S. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11, 151–197 (1982).

    Article  Google Scholar 

  2. Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    Article  Google Scholar 

  3. Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).

    Article  Google Scholar 

  4. Jacobel, A. W. et al. Deep Pacific storage of respired carbon during the last ice age: perspectives from bottom water oxygen reconstructions. Quat. Sci. Rev. 230, 106065 (2020).

    Article  Google Scholar 

  5. Bradtmiller, L., Anderson, R., Sachs, J. & Fleisher, M. A deeper respired carbon pool in the glacial equatorial Pacific Ocean. Earth Planet. Sci. Lett. 299, 417–425 (2010).

    Article  Google Scholar 

  6. Galbraith, E. D. & Jaccard, S. L. Deglacial weakening of the oceanic soft tissue pump: global constraints from sedimentary nitrogen isotopes and oxygenation proxies. Quat. Sci. Rev. 109, 38–48 (2015).

    Article  Google Scholar 

  7. Jaccard, S. L., Galbraith, E. D., Martínez-García, A. & Anderson, R. F. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age. Nature 530, 207–210 (2016).

    Article  Google Scholar 

  8. Anderson, R. F. et al. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33, 301–317 (2019).

    Article  Google Scholar 

  9. Yamamoto, A., Abe-Ouchi, A., Ohgaito, R., Ito, A. & Oka, A. Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust. Climate 15, 981–996 (2019).

    Google Scholar 

  10. Khatiwala, S., Schmittner, A. & Muglia, J. Air–sea disequilibrium enhances ocean carbon storage during glacial periods. Sci. Adv. 5, eaaw4981 (2019).

    Article  Google Scholar 

  11. Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).

  12. Stephens, B. B. & Keeling, R. F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404, 171–174 (2000).

    Article  Google Scholar 

  13. Ito, T. & Follows, M. J. Air–sea disequilibrium of carbon dioxide enhances the biological carbon sequestration in the Southern Ocean. Glob. Biogeochemical Cycles 27, 1129–1138 (2013).

    Article  Google Scholar 

  14. Ito, T., Follows, M. J. & Boyle, E. A. Is AOU a good measure of respiration in the oceans? Geophys. Res. Lett. 31, L17305 (2004).

    Article  Google Scholar 

  15. Wolf, M. K., Hamme, R. C., Gilbert, D., Yashayaev, I. & Thierry, V. Oxygen saturation surrounding deep water formation events in the Labrador Sea from Argo-O2 data. Glob. Biogeochem. Cycles 32, 635–653 (2018).

    Article  Google Scholar 

  16. Russell, J. L. & Dickson, A. G. Variability in oxygen and nutrients in South Pacific Antarctic Intermediate Water. Glob. Biogeochem. Cycles 17, 1033 (2003).

    Article  Google Scholar 

  17. Khatiwala, S., Primeau, F. & Holzer, M. Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age. Earth Planet. Sci. Lett. 325–326, 116–125 (2012).

    Article  Google Scholar 

  18. Duteil, O. et al. A novel estimate of ocean oxygen utilisation points to a reduced rate of respiration in the ocean interior. Biogeosciences 10, 7723–7738 (2013).

    Article  Google Scholar 

  19. Eggleston, S. & Galbraith, E. D. The devil’s in the disequilibrium: multi-component analysis of dissolved carbon and oxygen changes under a broad range of forcings in a general circulation model. Biogeosciences 15, 3761–3777 (2018).

    Article  Google Scholar 

  20. Weaver, A. J. et al. The UVic Earth System Climate Model: model description, climatology, and applications to past, present and future climates. Atmos. Ocean 39, 361–428 (2001).

    Article  Google Scholar 

  21. Schmittner, A. & Somes, C. J. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean’s soft-tissue biological pump. Paleoceanography 31, 669–693 (2016).

    Article  Google Scholar 

  22. Muglia, J., Skinner, L. C. & Schmittner, A. Weak overturning circulation and high Southern Ocean nutrient utilization maximized glacial ocean carbon. Earth Planet. Sci. Lett. 496, 47–56 (2018).

    Article  Google Scholar 

  23. Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    Article  Google Scholar 

  24. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  25. Gottschalk, J. et al. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nat. Commun. 7, 11539 (2016).

    Article  Google Scholar 

  26. Lu, Z. et al. Oxygen depletion recorded in upper waters of the glacial Southern Ocean. Nat. Commun. 48, 829–834 (2016).

    Google Scholar 

  27. Hoogakker, B. A. A., Elderfield, H., Schmiedl, G., McCave, I. N. & Rickaby, R. E. M. Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin. Nat. Geosci. 8, 40–43 (2015).

    Article  Google Scholar 

  28. Bunzel, D. et al. A multi-proxy analysis of late quaternary ocean and climate variability for the Maldives, Inner Sea. Climate 13, 1791–1813 (2017).

    Google Scholar 

  29. Hoogakker, B. A. A. et al. Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific. Nature 562, 410–413 (2018).

    Article  Google Scholar 

  30. Umling, N. E. & Thunell, R. C. Mid-depth respired carbon storage and oxygenation of the eastern equatorial Pacific over the last 25,000 years. Quat. Sci. Rev. 189, 43–56 (2018).

    Article  Google Scholar 

  31. Durand, A. et al. Reduced oxygenation at intermediate depths of the southwest Pacific during the Last Glacial Maximum. Earth Planet. Sci. Lett. 491, 48–57 (2018).

    Article  Google Scholar 

  32. Lu, W. et al. I/Ca in epifaunal benthic foraminifera: a semi-quantitative proxy for bottom water oxygen in a multi-proxy compilation for glacial ocean deoxygenation. Earth Planet. Sci. Lett. 533, 116055 (2020).

    Article  Google Scholar 

  33. Kohfeld, K. E., Quéré, C. L., Harrison, S. P. & Anderson, R. F. Role of marine biology in glacial–interglacial CO2 cycles. Science 308, 74–78 (2005).

    Article  Google Scholar 

  34. Waelbroeck, C. et al. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci. 2, 127–132 (2009).

    Article  Google Scholar 

  35. Benz, V., Esper, O., Gersonde, R., Lamy, F. & Tiedemann, R. Last Glacial Maximum sea surface temperature and sea-ice extent in the pacific sector of the southern ocean. Quat. Sci. Rev. 146, 216–237 (2016).

    Article  Google Scholar 

  36. Matsumoto, K., Hashioka, T. & Yamanaka, Y. Effect of temperature-dependent organic carbon decay on atmospheric \(p_{{\rm{CO}}2}\). J. Geophys. Res. Biogeosci. 112, G02007 (2007).

    Google Scholar 

  37. Oka, A., Abe-Ouchi, A., Chikamoto, M. O. & Ide, T. Mechanisms controlling export production at the LGM: effects of changes in oceanic physical fields and atmospheric dust deposition. Glob. Biogeochem. Cycles 25, GB2009 (2011).

    Article  Google Scholar 

  38. Schmittner, A., Galbraith, E. D., Hostetler, S. W., Pedersen, T. F. & Zhang, R. Large fluctuations of dissolved oxygen in the Indian and Pacific Oceans during Dansgaard–Oeschger oscillations caused by variations of North Atlantic Deep Water subduction. Paleoceanography 22, PA3207 (2007).

    Article  Google Scholar 

  39. Roche, D. M., Crosta, X. & Renssen, H. Evaluating Southern Ocean sea-ice for the Last Glacial Maximum and pre-industrial climates: PMIP-2 models and data evidence. Quat. Sci. Rev. 56, 99–106 (2012).

    Article  Google Scholar 

  40. Smith, J. A., Hillenbrand, C.-D., Pudsey, C. J., Allen, C. S. & Graham, A. G. C. The presence of polynyas in the Weddell Sea during the last glacial period with implications for the reconstruction of sea-ice limits and ice sheet history. Earth Planet. Sci. Lett. 296, 287–298 (2010).

    Article  Google Scholar 

  41. Zanowski, H., Hallberg, R. & Sarmiento, J. L. Abyssal ocean warming and salinification after Weddell polynyas in the GFDL CM2G coupled climate model. J. Phys. Oceanogr. 45, 2755–2772 (2015).

    Article  Google Scholar 

  42. Conway, T., Wolff, E., Röthlisberger, R., Mulvaney, R. & Elderfield, H. Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum. Nat. Commun. 6, 7850 (2015).

    Article  Google Scholar 

  43. Shoenfelt, E. M., Winckler, G., Lamy, F., Anderson, R. F. & Bostick, B. C. Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods. Proc. Natl Acad. Sci. USA 115, 11180–11185 (2018).

    Article  Google Scholar 

  44. Galbraith, E. D. & Skinner, L. C. The biological pump during the Last Glacial Maximum. Annu. Rev. Mar. Sci. 12, 559–586 (2020).

    Article  Google Scholar 

  45. Galbraith, E. D. & Martiny, A. C. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. Proc. Natl Acad. Sci. USA 112, 8199–8204 (2015).

    Article  Google Scholar 

  46. Matsumoto, K., Rickaby, R. & Tanioka, T. Carbon export buffering and CO2 drawdown by flexible phytoplankton C:N:P under glacial conditions. Paleoceanogr. Paleoclimatol. 35, e2019PA003823 (2020).

    Article  Google Scholar 

  47. Ödalen, M. et al. Variable C/P composition of organic production and its effect on ocean carbon storage in glacial-like model simulations. Biogeosciences 17, 2219–2244 (2020).

    Article  Google Scholar 

  48. Garcia, H. E. et al. World Ocean Atlas 2018 Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation (NOAA, 2018).

  49. Drucker, R. & Riser, S. C. In situ phase-domain calibration of oxygen Optodes on profiling floats. Methods Oceanogr. 17, 296–318 (2016).

    Article  Google Scholar 

  50. Johnson, K. S. et al. SOCCOM Float Data—Snapshot 2017-06-06 (UC San Diego Library Digital Collections, 2017).

  51. Gottschalk, J. et al. Carbon isotope offsets between benthic foraminifer species of the genus Cibicides (Cibicidoides) in the glacial sub-Antarctic Atlantic. Paleoceanography 31, 1583–1602 (2016).

    Article  Google Scholar 

  52. Muglia, J., Somes, C. J., Nickelsen, L. & Schmittner, A. Combined effects of atmospheric and seafloor iron fluxes to the glacial ocean. Paleoceanography 32, 1204–1218 (2017).

    Article  Google Scholar 

  53. Lambert, F. et al. Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates. Geophys. Res. Lett. 42, 6014–6023 (2015).

    Article  Google Scholar 

  54. Mahowald, N. M. et al. Atmospheric iron deposition: global distribution, variability, and human perturbations. Annu. Rev. Mar. Sci. 1, 245–278 (2008).

    Article  Google Scholar 

  55. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    Article  Google Scholar 

  56. Khatiwala, S., Visbeck, M. & Cane, M. A. Accelerated simulation of passive tracers in ocean circulation models. Ocean Model. 9, 51–69 (2005).

    Article  Google Scholar 

  57. Khatiwala, S. A computational framework for simulation of biogeochemical tracers in the ocean. Glob. Biogeochem. Cycles 21, GB3001 (2007).

    Article  Google Scholar 

  58. Khatiwala, S. Transport Matrix Method Software for Ocean Biogeochemical Simulations https://doi.org/10.5281/Zenodo.1246300 (2018).

  59. Muglia, J. & Schmittner, A. Glacial Atlantic overturning increased by wind stress in climate models. Geophys. Res. Lett. 42, 9862–9868 (2015).

    Article  Google Scholar 

  60. Abe-Ouchi, A. et al. Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geosci. Model Dev. 8, 3621–3637 (2015).

    Article  Google Scholar 

  61. Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).

    Article  Google Scholar 

  62. Sarnthein, M., Schneider, B. & Grootes, P. M. Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean. Climate 9, 2595–2614 (2013).

    Google Scholar 

  63. Skinner, L. C. et al. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2. Nat. Commun. 8, 16010 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by UK NERC grants NE/M020835/1 and NE/T009357/1 to S.K., and US National Science Foundation grant OCE-1924215 to A.S. E.C. acknowledges support from the Rhodes Trust. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory (ark:/85065/d7wd3xhc), sponsored by the National Science Foundation and other agencies, and the University of Oxford Advanced Research Computing (ARC) facility (https://doi.org/10.5281/zenodo.22558). Data shown in Fig. 1 were collected and made freely available by the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Project funded by the National Science Foundation, Division of Polar Programs (NSF PLR -1425989), supplemented by NASA, and by the International Argo Program and the NOAA programmes that contribute to it. The Argo Program is part of the Global Ocean Observing System.

Author information

Authors and Affiliations

Authors

Contributions

S.K. and A.S. designed the study; S.K. carried out the experiments; all the authors analysed the results; E.C. wrote the manuscript with input from S.K. and A.S.

Corresponding author

Correspondence to Ellen Cliff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26 and discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cliff, E., Khatiwala, S. & Schmittner, A. Glacial deep ocean deoxygenation driven by biologically mediated air–sea disequilibrium. Nat. Geosci. 14, 43–50 (2021). https://doi.org/10.1038/s41561-020-00667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-020-00667-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing