Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Opportunities and challenges in using remaining carbon budgets to guide climate policy

Abstract

The remaining carbon budget represents the total amount of CO2 that can still be emitted in the future while limiting global warming to a given temperature target. Remaining carbon budget estimates range widely, however, and this uncertainty can be used to either trivialize the most ambitious mitigation targets by characterizing them as impossible, or to argue that there is ample time to allow for a gradual transition to a low-carbon economy. Neither of these extremes is consistent with our best understanding of the policy implications of remaining carbon budgets. Understanding the scientific and socio-economic uncertainties affecting the size of the remaining carbon budgets, as well as the methodological choices and assumptions that underlie their calculation, is essential before applying them as a policy tool. Here we provide recommendations on how to calculate remaining carbon budgets in a traceable and transparent way, and discuss their uncertainties and implications for both international and national climate policies.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Relationship between the TCRE, the effective TCRE, and the total and remaining carbon budgets.
Fig. 2: Illustrative example of distributing the remaining carbon budget over time into five-year discrete time intervals.

Data availability

SR1.5 scenarios have been made available through refs. 87,88 at https://data.ene.iiasa.ac.at/iamc-1.5c-explorer/.

Code availability

The MAGICC7 model emulator is available from Z.R.J.N. upon request. Codes for producing the figures are available from H.D.M. or K.B.T. upon request.

References

  1. Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J. & Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 571, 335–342 (2019).

    Google Scholar 

  2. Tokarska, K. B. et al. Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy. Nat. Geosci. 12, 964–971 (2019).

    Google Scholar 

  3. Raupach, M. R. et al. Sharing a quota on cumulative carbon emissions. Nat. Clim. Change 4, 873–879 (2014).

    Google Scholar 

  4. Gignac, R. & Matthews, H. D. Allocating a 2 °C cumulative carbon budget to countries. Environ. Res. Lett. 10, 075004 (2015).

    Google Scholar 

  5. Nauels, A. et al. ZERO IN ON the Remaining Carbon Budget and Decadal Warming Rates. The CONSTRAIN Project Annual Report 2019 (2019); https://doi.org/10.5518/100/20

  6. Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, L04705 (2008).

    Google Scholar 

  7. IPCC in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 2 (WMO, 2018).

  8. Mengis, N., Partanen, A.-I., Jalbert, J. & Matthews, H. D. 1.5 °C carbon budget dependent on carbon cycle uncertainty and future non-CO2 forcing. Sci. Rep. 8, 5831 (2018).

    Google Scholar 

  9. Tokarska, K. B., Gillett, N. P., Arora, V. K., Lee, W. G. & Zickfeld, K. The influence of non-CO2 forcings on cumulative carbon emissions budgets. Environ. Res. Lett. 13, 034039 (2018).

    Google Scholar 

  10. Matthews, H. D. et al. Estimating carbon budgets for ambitious climate targets. Curr. Clim. Change Rep. 3, 69–77 (2017).

    Google Scholar 

  11. Millar, R. J. & Friedlingstein, P. The utility of the historical record for assessing the transient climate response to cumulative emissions. Philos. Trans. R. Soc. A 376, 20160449 (2018).

    Google Scholar 

  12. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    Google Scholar 

  13. Zickfeld, K., Arora, V. K. & Gillett, N. P. Is the climate response to CO2 emissions path dependent? Geophys. Res. Lett. 39, L05703 (2012).

    Google Scholar 

  14. Mengis, N. & Matthews, D. Non-CO2 forcing changes will likely decrease the remaining carbon budget for 1.5°C. NPL. Clim. Atmos. Sci. 3, 19 (2020).

    Google Scholar 

  15. Matthews, H. D. et al. An integrated approach to quantifying uncertainties in the remaining carbon budget. Commun. Earth Environ. (in the press).

  16. Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).

    Google Scholar 

  17. Jones, C. D. & Friedlingstein, P. Quantifying process-level uncertainty contributions to TCRE and carbon budgets for meeting Paris Agreement climate targets. Environ. Res. Lett. 15, 074019 (2020).

    Google Scholar 

  18. Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).

    Google Scholar 

  19. Jiménez-de-la-Cuesta, D. & Mauritsen, T. Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post-1970s global warming. Nat. Geosci. 12, 902–905 (2019).

    Google Scholar 

  20. Leduc, M., Matthews, H. D. & de Elía, R. Quantifying the limits of a linear temperature response to cumulative CO2 emissions. J. Clim. 28, 9955–9968 (2015).

    Google Scholar 

  21. Tokarska, K. B., Gillett, N. P., Weaver, A. J., Arora, V. K. & Eby, M. The climate response to five trillion tonnes of carbon. Nat. Clim. Change 6, 851–855 (2016).

    Google Scholar 

  22. Leduc, M., Matthews, H. D. & de Elía, R. Regional estimates of the transient climate response to cumulative CO2 emissions. Nat. Clim. Change 6, 474–478 (2016).

    Google Scholar 

  23. Herrington, T. & Zickfeld, K. Path independence of climate and carbon cycle response over a broad range of cumulative carbon emissions. Earth Syst. Dynam. 5, 409–422 (2014).

    Google Scholar 

  24. Winton, M., Takahashi, K. & Held, I. M. Importance of ocean heat uptake efficacy to transient climate change. J. Clim. 23, 2333–2344 (2010).

    Google Scholar 

  25. Armour, K. C., Bitz, C. M. & Roe, G. H. Time-varying climate sensitivity from regional feedbacks. J. Clim. 26, 4518–4534 (2013).

    Google Scholar 

  26. Andrews, T. et al. Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophys. Res. Lett. 45, 8490–8499 (2018).

    Google Scholar 

  27. Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).

    Google Scholar 

  28. Comyn-Platt, E. et al. Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks. Nat. Geosci. 11, 568–573 (2018).

    Google Scholar 

  29. Gillett, N. P., Arora, V. K., Matthews, D. & Allen, M. R. Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Clim. 26, 6844–6858 (2013).

    Google Scholar 

  30. IPCC in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, 2013).

  31. MacDougall, A. H., Zickfeld, K., Knutti, R. & Matthews, H. D. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings. Environ. Res. Lett. 10, 125003 (2015).

    Google Scholar 

  32. Tokarska, K. B., Zickfeld, K. & Rogelj, J. Path independence of carbon budgets when meeting a stringent global mean temperature target after an overshoot. Earth’s Future 7, 1283–1295 (2019).

    Google Scholar 

  33. MacDougall, A. H. et al. Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences 17, 2987–3016 (2020).

    Google Scholar 

  34. Hienola, A. et al. The impact of aerosol emissions on the 1.5 °C pathways. Environ. Res. Lett. 13, 044011 (2018).

    Google Scholar 

  35. Lelieveld, J. et al. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl Acad. Sci. USA 116, 7192–7197 (2019).

    Google Scholar 

  36. Rogelj, J. et al. Air-pollution emission ranges consistent with the representative concentration pathways. Nat. Clim. Change 4, 446–450 (2014).

    Google Scholar 

  37. Rogelj, J. et al. Mitigation choices impact carbon budget size compatible with low temperature goals. Environ. Res. Lett. 10, 075003 (2015).

    Google Scholar 

  38. Rogelj, J. et al. Differences between carbon budget estimates unravelled. Nat. Clim. Change 6, 245–252 (2016).

    Google Scholar 

  39. Haustein, K. et al. A real-time global warming index. Sci. Rep. 7, 15417 (2017).

    Google Scholar 

  40. Rogelj, J., Schleussner, C.-F. & Hare, W. Getting it right matters: temperature goal interpretations in geoscience research. Geophys. Res. Lett. 44, 10662–10665 (2017).

    Google Scholar 

  41. United Nations Framework Convention on Climate Change (United Nations, 1992); https://unfccc.int/resource/docs/convkp/conveng.pdf

  42. Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6, 827–835 (2016).

    Google Scholar 

  43. Tokarska, K. B. et al. Uncertainty in carbon budget estimates due to internal climate variability. Environ. Res. Lett. 15, 104064 (2020).

    Google Scholar 

  44. Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  45. Knutti, R. & Rogelj, J. The legacy of our CO2 emissions: a clash of scientific facts, politics and ethics. Clim. Change 133, 361–373 (2015).

    Google Scholar 

  46. IPCC in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 1 (WMO, 2018).

  47. Hawkins, E. et al. Estimating changes in global temperature since the preindustrial period. Bull. Am. Meteorol. Soc. 98, 1841–1856 (2017).

    Google Scholar 

  48. Schurer, A. P., Mann, M. E., Hawkins, E., Tett, S. F. B. & Hegerl, G. C. Importance of the pre-industrial baseline for likelihood of exceeding Paris goals. Nat. Clim. Change 7, 563–568 (2017).

    Google Scholar 

  49. Richardson, M., Cowtan, K., Hawkins, E. & Stolpe, M. B. Reconciled climate response estimates from climate models and the energy budget of Earth. Nat. Clim. Change 6, 931–935 (2016).

    Google Scholar 

  50. The Emissions Gap Report 2019 (United Nations Environment Programme, 2019); https://go.nature.com/3erYx1u

  51. Rogelj, J. et al. Understanding the origin of Paris Agreement emission uncertainties. Nat. Commun. 8, 15748 (2017).

    Google Scholar 

  52. den Elzen, M., Janssen, M., Rotmans, J., Swart, R. & Vries, B. Allocating constrained global carbon budgets: inter-regional and inter-generational equity for a sustainable world. Int. J. Glob. Energy Issues 4, 287–301 (1992).

    Google Scholar 

  53. Robiou du Pont, Y., Jeffery, M. L., Gütschow, J., Christoff, P. & Meinshausen, M. National contributions for decarbonizing the world economy in line with the G7 agreement. Environ. Res. Lett. 11, 054005 (2016).

    Google Scholar 

  54. Höhne, N., den Elzen, M. & Escalante, D. Regional GHG reduction targets based on effort sharing: a comparison of studies. Clim. Policy 14, 122–147 (2014).

    Google Scholar 

  55. Gibson, R. B. et al. From Paris to Projects: Clarifying the Implications of Canada’s Climate Change Mitigation Commitments for the Planning and Assessment of Projects and Strategic Undertakings (University of Waterloo, 2019).

  56. Crownshaw, T. et al. Over the horizon: exploring the conditions of a post-growth world. Anthr. Rev. 6, 117–141 (2019).

    Google Scholar 

  57. Smith, C. J. et al. Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming. Nat. Commun. 10, 101 (2019).

    Google Scholar 

  58. Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373–377 (2019).

    Google Scholar 

  59. Matthews, H. D. Quantifying historical carbon and climate debts among nations. Nat. Clim. Change 6, 60–64 (2016).

    Google Scholar 

  60. Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).

    Google Scholar 

  61. Zickfeld, K., MacDougall, A. H. & Matthews, H. D. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. Environ. Res. Lett. 11, 055006 (2016).

    Google Scholar 

  62. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

    Google Scholar 

  63. Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

    Google Scholar 

  64. Cao, L. & Caldeira, K. Atmospheric carbon dioxide removal: long-term consequences and commitment. Environ. Res. Lett. 5, 024011 (2010).

    Google Scholar 

  65. Jones, C. D. et al. Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11, 095012 (2016).

    Google Scholar 

  66. Tokarska, K. B. & Zickfeld, K. The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change. Environ. Res. Lett. 10, 094013 (2015).

    Google Scholar 

  67. Nemet, G. F. et al. Negative emissions—part 3: Innovation and upscaling. Environ. Res. Lett. 13, 063003 (2018).

    Google Scholar 

  68. Frölicher, T. L. & Joos, F. Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model. Clim. Dyn. 35, 1439–1459 (2010).

    Google Scholar 

  69. Mathesius, S., Hofmann, M., Caldeira, K. & Schellnhuber, H. J. Long-term response of oceans to CO2 removal from the atmosphere. Nat. Clim. Change 5, 1107–1113 (2015).

    Google Scholar 

  70. Li, X., Zickfeld, K., Mathesius, S., Kohfeld, K. & Matthews, J. B. R. Irreversibility of marine climate change impacts under carbon dioxide removal. Geophys. Res. Lett. 47, e2020GL088507 (2020).

    Google Scholar 

  71. Meinshausen, M. et al. National post-2020 greenhouse gas targets and diversity-aware leadership. Nat. Clim. Change 5, 1098–1106 (2015).

    Google Scholar 

  72. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. Atmospheres 117, D08101 (2012).

    Google Scholar 

  73. Cowtan, K. Coverage Bias in the HadCRUT4 Temperature Series and its Impact on Recent Temperature Trends. UPDATE: COBE-SST2 Based Land-Ocean Dataset (2017); https://www-users.york.ac.uk/~kdc3/papers/coverage2013/update.171107.pdf

  74. Cowtan, K. et al. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett. 42, 6526–6534 (2015).

    Google Scholar 

  75. Pfleiderer, P., Schleussner, C.-F., Mengel, M. & Rogelj, J. Global mean temperature indicators linked to warming levels avoiding climate risks. Environ. Res. Lett. 13, 064015 (2018).

    Google Scholar 

  76. Schurer, A. et al. Estimating the Transient Climate Response from Observed Warming. J. Clim. 31, 8645–8663 (2018).

    Google Scholar 

  77. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    Google Scholar 

  78. Kumar, S. et al. Land use/cover change impacts in CMIP5 climate simulations: a new methodology and 21st century challenges. J. Geophys. Res. Atmospheres 118, 6337–6353 (2013).

    Google Scholar 

  79. Simmons, C. T. & Matthews, H. D. Assessing the implications of human land-use change for the transient climate response to cumulative carbon emissions. Environ. Res. Lett. 11, 035001 (2016).

    Google Scholar 

  80. Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    Google Scholar 

  81. IPCC in Climate Change 2013: The Physical Science Basis (eds T. F. Stocker et al.) 33–115 (Cambridge Univ. Press, 2013).

  82. Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

    Google Scholar 

  83. Tokarska, K. B. & Gillett, N. P. Cumulative carbon emissions budgets consistent with 1.5 °C global warming. Nat. Clim. Change 8, 296–299 (2018).

    Google Scholar 

  84. Frölicher, T. L. & Paynter, D. J. Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales. Environ. Res. Lett. 10, 075002 (2015).

    Google Scholar 

  85. Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon–climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci. USA 112, 3752–3757 (2015).

    Google Scholar 

  86. McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).

    Google Scholar 

  87. Huppmann, D., Rogelj, J., Kriegler, E., Krey, V. & Riahi, K. A new scenario resource for integrated 1.5 °C research. Nat. Clim. Change 8, 1027–1030 (2018).

    Google Scholar 

  88. Huppmann, D. et al. IAMC 1.5°C Scenario Explorer and Data hosted by IIASA (IIASA, 2018); https://doi.org/10.22022/SR15/08-2018.15429

  89. Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    Google Scholar 

  90. Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    Google Scholar 

  91. Friedlingstein, P. et al. Global Carbon Budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    Google Scholar 

  92. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Google Scholar 

  93. Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).

    Google Scholar 

  94. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  95. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    Google Scholar 

  96. Forster, P. M., Maycock, A. C., McKenna, C. M. & Smith, C. Latest climate models confirm need for urgent mitigation. Nat. Clim. Change 10, 7–10 (2020).

    Google Scholar 

  97. Sutton, R. T. ESD Ideas: a simple proposal to improve the contribution of IPCC WGI to the assessment and communication of climate change risks. Earth Syst. Dynam. 9, 1155–1158 (2018).

    Google Scholar 

  98. IPCC in Climate Change 2013: The Physical Science Basis. Summary for Policymakers (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  99. Jones, C. D. et al. The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions. Geosci. Model Dev. 12, 4375–4385 (2019).

    Google Scholar 

  100. Forster, P. M. et al. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmospheres 118, 1139–1150 (2013).

    Google Scholar 

  101. Grose, M. R., Gregory, J., Colman, R. & Andrews, T. What climate sensitivity index is most useful for projections? Geophys. Res. Lett. 45, 1559–1566 (2018).

    Google Scholar 

  102. Höhne, N., den Elzen, M. & Escalante, D. Regional GHG reduction targets based on effort sharing: a comparison of studies. Clim. Policy 14, 122–147 (2014).

    Google Scholar 

  103. McKinnon, C. Climate justice in a carbon budget. Clim. Change 133, 375–384 (2015).

    Google Scholar 

  104. Samson, J., Berteaux, D., McGill, B. J. & Humphries, M. M. Geographic disparities and moral hazards in the predicted impacts of climate change on human populations. Glob. Ecol. Biogeogr. 20, 532–544 (2011).

    Google Scholar 

Download references

Acknowledgements

We are grateful for the opportunity to have discussed these and other issues at the International Workshop on the Remaining Carbon Budget, organized with the support of the Global Carbon Project, the CRESCENDO project, Stanford University, the University of Melbourne, and Simon Fraser University. H.D.M. has been supported by funding from the Concordia University Research Chair programme and the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN-2017-04159). K.B.T., J.R., P.M.F., R.K. and R.S. were supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820829 (CONSTRAIN project). J.G.C. was supported by the Australian National Environmental Science Program – Earth Systems and Climate Change Hub. P.F. and T.L.F. were supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 821003 (4C project). T.L.F. was also supported by the Swiss National Science Foundation under grant PP00P2_170687. A.H.M. and K.Z. are supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant Program. C.D.J. was supported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101) and by H2020 EU project CRESCENDO under grant agreement No. 641816. R.B.J. and J.G.C. acknowledge support from the Gordon and Betty Moore Foundation (GBMF5439). C.K. is supported by the US DOE, BER, RGMA program through the ECRP and RUBISCO projects.

Author information

Authors and Affiliations

Authors

Contributions

H.D.M. initiated the study and wrote the manuscript with input from K.B.T., Z.R.J.N., J.R., M.M., N.M., J.G.C., T.L.F. and suggestions from other authors. H.D.M., K.B.T. and Z.R.J.N. made the figures. All authors participated in discussions at the International Workshop on the Remaining Carbon budget which initiated this work, as well as in manuscript editing and revisions.

Corresponding author

Correspondence to H. Damon Matthews.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editors: Tamara Goldin; Heike Langenberg; Xujia Jiang

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matthews, H.D., Tokarska, K.B., Nicholls, Z.R.J. et al. Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nat. Geosci. 13, 769–779 (2020). https://doi.org/10.1038/s41561-020-00663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-020-00663-3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing