Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography


A striking feature of the marine fossil record is the variable intensity of extinction during superficially similar climate transitions. Here we combine climate models and species trait simulations to explore the degree to which differing palaeogeographic boundary conditions and differing magnitudes of cooling and glaciation can explain the relative intensity of marine extinction during greenhouse–icehouse transitions in the Late Ordovician and the Cenozoic. Simulations modelled the response of virtual species to cooling climate using a spatially explicit cellular automaton algorithm. We find that palaeogeography alone may be a contributing factor, as identical changes in meridional sea surface temperature gradients caused greater extinction in Late Ordovician simulations than in Cenozoic simulations. Differences in extinction from palaeogeography are significant, but by themselves are insufficient to explain observed differences in extinction intensity. However, when simulations included inferred changes in continental flooding and interval-specific models of sea surface temperature, predicted differences in relative extinction intensity were more consistent with observations from the fossil record. Our results support the hypothesis that intense extinction in the Late Ordovician is partially attributable to exceptionally rapid and severe cooling compared to Cenozoic events.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Per-cell proportional extinction for each greenhouse–icehouse transition.
Figure 2: Schematic of dispersal and extinction in the simulation.
Figure 3: Proportional extinction results from the simulations.
Figure 4: Proportional extinction on north–south coastlines compared to east–west coastlines and ‘islands’.

Data availability

Data from simulations are provided as Supplementary Data.

Code availability

Simulation code is provided as Supplementary Software.


  1. 1.

    Bambach, R. K. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127–155 (2006).

    Google Scholar 

  2. 2.

    Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982).

    Google Scholar 

  3. 3.

    Bond, D. P. G. & Wignall, P. B. Large igneous provinces and mass extinctions: an update. Geol. Soc. Am. Spec. Pap. 505, 29–55 (2014).

    Google Scholar 

  4. 4.

    Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 490–500 (2009).

    Google Scholar 

  5. 5.

    Joachimski, M. M. & Buggisch, W. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30, 711–714 (2002).

    Google Scholar 

  6. 6.

    Brenchley, P. J. et al. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geol. Soc. Am. Bull. 115, 89–104 (2003).

    Google Scholar 

  7. 7.

    Melchin, M. J., Mitchell, C. E., Holmden, C. & Štorch, P. Environmental changes in the Late Ordovician–Early Silurian: review and new insights from black shales and nitrogen isotopes. Geol. Soc. Am. Bull. 125, 1635–1670 (2013).

    Google Scholar 

  8. 8.

    Sheehan, P. M. The Late Ordovician mass extinction. Annu. Rev. Earth Planet. Sci. 29, 331–364 (2001).

    Google Scholar 

  9. 9.

    Edie, S. M., Huang, S., Collins, K. S., Roy, K. & Jablonski, D. Loss of biodiversity dimensions through shifting climates and ancient mass extinctions. Integr. Comp. Biol. 58, 1179–1190 (2018).

    Google Scholar 

  10. 10.

    Hansen, T. A. Extinction of Late Eocene to Oligocene molluscs: relationship to shelf area, temperature changes and impact events. Palaios 2, 69–75 (1987).

    Google Scholar 

  11. 11.

    Ivany, L. C., Patterson, W. P. & Lohmann, K. C. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 407, 887–890 (2000).

    Google Scholar 

  12. 12.

    Powell, M. G. Timing and selectivity of the Late Mississippian mass extinction of brachiopod genera from the Central Appalachian Basin. Palaios 23, 525–534 (2008).

    Google Scholar 

  13. 13.

    Stanley, S. M. Anatomy of a regional mass extinction: Plio–Pleistocene decimation of the Western Atlantic bivalve fauna. Palaios 1, 17–36 (1986).

    Google Scholar 

  14. 14.

    Bartlett, R. et al. Abrupt global-ocean anoxia during the Late Ordovician–Early Silurian detected using uranium isotopes of marine carbonates. Proc. Natl Acad. Sci. USA 115, 5896–5901 (2018).

    Google Scholar 

  15. 15.

    Ghienne, J.-F. et al. A Cenozoic-style scenario for the End-Ordovician glaciation. Nat. Commun. 5, 4485 (2014).

    Google Scholar 

  16. 16.

    Hammarlund, E. U. et al. A sulfidic driver for the End-Ordovician mass extinction. Earth Planet. Sci. Lett. 331–332, 128–139 (2012).

    Google Scholar 

  17. 17.

    Harper, D. A. T., Hammarlund, E. U. & Rasmussen, C. M. Ø. End Ordovician extinctions: a coincidence of causes. Gondwana Res. 25, 1294–1307 (2014).

    Google Scholar 

  18. 18.

    Vandenbroucke, T. R. A. et al. Metal-induced malformations in Early Palaeozoic plankton are harbingers of mass extinction. Nat. Commun. 6, 7966 (2015).

    Google Scholar 

  19. 19.

    Zhou, L. et al. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 420, 223–234 (2015).

    Google Scholar 

  20. 20.

    Zou, C. et al. Ocean euxinia and climate change ‘double whammy’ drove the Late Ordovician mass extinction. Geology 46, 535–538 (2018).

    Google Scholar 

  21. 21.

    Melott, A. L. et al. Did a gamma-ray burst initiate the Late Ordovician mass extinction? Int. J. Astrobiol. 3, 55–61 (2004).

    Google Scholar 

  22. 22.

    Gong, Q. et al. Mercury spikes suggest volcanic driver of the Ordovician–Silurian mass extinction. Sci. Rep. 7, 5304 (2017).

    Google Scholar 

  23. 23.

    Jones, D. S., Martini, A. M., Fike, D. A. & Kaiho, K. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from South China and Laurentia. Geology 45, 631–634 (2017).

    Google Scholar 

  24. 24.

    Saupe, E. et al. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proc. R. Soc. Lond. B 281, 20141995 (2014).

    Google Scholar 

  25. 25.

    Peterson, A. T. Ecological niche conservatism: a time‐structured review of evidence. J. Biogeogr. 38, 817–827 (2011).

    Google Scholar 

  26. 26.

    Stigall, A. L. When and how do species achieve niche stability over long time scales? Ecography 37, 1123–1132 (2014).

    Google Scholar 

  27. 27.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Google Scholar 

  28. 28.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Google Scholar 

  29. 29.

    Clarke, A. & Crame, J. A. The Southern Ocean benthic fauna and climate change: a historical perspective. Philos. Trans. R. Soc. B 338, 299–309 (1992).

    Google Scholar 

  30. 30.

    Barnes, D. K., Griffiths, H. J. & Kaiser, S. Geographic range shift responses to climate change by Antarctic benthos: where we should look. Mar. Ecol. Prog. Ser. 393, 13–26 (2009).

    Google Scholar 

  31. 31.

    Valentine, J. W. Paleoecologic Molluscan Geography of the Californian Pleistocene 134 (Univ. California Press, 1961).

  32. 32.

    Brett, C. E., Hendy, A. J., Bartholomew, A. J., Bonelli, J. R. Jr & McLaughlin, P. I. Response of shallow marine biotas to sea-level fluctuations: a review of faunal replacement and the process of habitat tracking. Palaios 22, 228–244 (2007).

    Google Scholar 

  33. 33.

    Valentine, J. W. Evolutionary Paleoecology of the Marine Biosphere (Prentice Hall, 1973).

  34. 34.

    Cocks, L. R. M. & Torsvik, T. H. Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. J. Geol. Soc. Lond. 159, 631–644 (2002).

    Google Scholar 

  35. 35.

    Stanley, S. M. Thermal barriers and the fate of perched faunas. Geology 38, 31–34 (2010).

    Google Scholar 

  36. 36.

    Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K. & Rosenthal, Y. Cooling and ice growth across the Eocene–Oligocene transition. Geology 36, 251–254 (2008).

    Google Scholar 

  37. 37.

    Pusz, A. E., Thunell, R. C. & Miller, K. G. Deep water temperature, carbonate ion and ice volume changes across the Eocene–Oligocene climate transition. Paleoceanogr. Paleoclimatol. 26, PA2205 (2011).

    Google Scholar 

  38. 38.

    Miller, K. G. et al. Climate threshold at the Eocene–Oligocene transition: Antarctic ice sheet influence on ocean circulation. Geol. Soc. Am. Spec. Pap. 452, 169–178 (2009).

    Google Scholar 

  39. 39.

    Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005).

    Google Scholar 

  40. 40.

    Finnegan, S. et al. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science 331, 903–906 (2011).

    Google Scholar 

  41. 41.

    Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C. & Nicoll, R. S. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321, 550–554 (2008).

    Google Scholar 

  42. 42.

    Liu, Z. H. et al. Global cooling during the Eocene–Oligocene climate transition. Science 323, 1187–1190 (2009).

    Google Scholar 

  43. 43.

    Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010).

    Google Scholar 

  44. 44.

    Katz, M. E. et al. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nat. Geosci. 1, 329–334 (2008).

    Google Scholar 

  45. 45.

    Rasmussen, C. M. Ø. & Harper, D. A. T. Did the amalgamation of continents drive the End Ordovician mass extinctions? Palaeogeogr. Palaeoclimatol. Palaeoecol. 311, 48–62 (2011).

    Google Scholar 

  46. 46.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. Lond. B 278, 1823–1830 (2010).

    Google Scholar 

  47. 47.

    Finnegan, S., Rasmussen, C. M. Ø. & Harper, D. A. T. Biogeographic and bathymetric determinants of brachiopod extinction and survival during the Late Ordovician mass extinction. Proc. R. Soc. B 283, 20160007 (2016).

    Google Scholar 

  48. 48.

    Finnegan, S., Heim, N. A., Peters, S. E. & Fischer, W. W. Climate change and the selective signature of the Late Ordovician mass extinction. Proc. Natl Acad. Sci. USA 109, 6829–6834 (2012).

    Google Scholar 

  49. 49.

    Finnegan, S., Rasmussen, C. M. Ø. & Harper, D. A. Identifying the most surprising victims of mass extinction events: an example using Late Ordovician brachiopods. Biol. Lett. 13, 20170400 (2017).

    Google Scholar 

  50. 50.

    Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).

    Google Scholar 

  51. 51.

    Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).

    Google Scholar 

  52. 52.

    Torsvik, T. H. & Cocks, L. R. M. Earth History and Palaeogeography (Cambridge Univ. Press, 2016).

  53. 53.

    Reddin, C. J., Kocsis, Á. T. & Kiessling, W. Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology 45, 70–84 (2019).

    Google Scholar 

  54. 54.

    O’Dea, A. et al. Formation of the Isthmus of Panama. Science 2, e1600883 (2016).

    Google Scholar 

  55. 55.

    Qiao, H., Saupe, E. E., Soberón, J., Peterson, A. T. & Myers, C. E. Impacts of niche breadth and dispersal ability on macroevolutionary patterns. Am. Nat. 188, 149–162 (2016).

    Google Scholar 

  56. 56.

    Rangel, T. F. L., Diniz‐Filho, J. A. F. & Colwell, R. K. Species richness and evolutionary niche dynamics: a spatial pattern-oriented simulation experiment. Am. Nat. 170, 602–616 (2007).

    Google Scholar 

  57. 57.

    Saupe, E. E. et al. Non-random latitudinal gradients in range size and niche breadth predicted by spatial patterns of climate. Glob. Ecol. Biogeogr. 28, 928–942 (2019).

    Google Scholar 

  58. 58.

    Blakey, R. C. Colorado Plateau Geosystems, 1–1 (Deep Time Maps, 2016); https://deeptimemaps.com/

  59. 59.

    Scotese, C. Digital Paleogeographic Map Archive, CD-ROM (PALEOMAP Project, Scotese, 2001).

  60. 60.

    Harris, J. et al. in Petroleum Systems Analysis—Case Studies: AAPG Memoir Vol. 114 (eds AbuAli, M. A., Moretti, I. & Nordgård Bolås, H. M.) 37–60 (American Association of Petroleum Geologists, 2017).

Download references


We thank C. Myers, A. Townsend Peterson and J. Soberón for help with developing the initial simulation framework, from which simulations were launched. H.Q. was supported by the Natural Science Foundation of China (31772432). E.E.S. was supported by an EAR NSF Postdoctoral Fellowship and Leverhulme Grant #DGR01020. A.P., J.-B.L. and Y.D. thank the CEA/ CCRT for providing access to HPC resources of TGCC under allocation 2014-012212 made by GENCI. This is a contribution to IGCP Project-653, ‘The Onset of the Great Ordovician Biodiversification Event’. A.F. and D.J.L. acknowledge funding from NERC through NE/K014757/1, NE/I005722/1, NE/I005714/1 and (P.J.V. also) NE/P013805/1. D.J.L. and P.J.V. acknowledge funding through ERC grant ‘The Greenhouse Earth System’ (T-GRES, project reference 340923). A.F., A.T.K.-A., D.J.L. and P.J.V. are thankful for the use of the computational facilities of the Advanced Computing Research Centre, University of Bristol (http://www.bris.ac.uk/acrc) (Bluecrystal). S.F. acknowledges funding from the David and Lucile Packard Foundation. This is PBDB publication no. 353. We thank all contributors to the PBDB, with special thanks to the top 10 for our data download: A. Hendy, W. Kiessling, P. Wagner, S. Holland, M. Uhen, B. Kröger, J. Alroy, A. Miller, M. Clapham and J. Sessa.

Author information




E.E.S. and S.F. designed the study, collected the data and wrote the manuscript. A.F., A.P., A.T.K.-A., D.J.L., J.-B.L., P.V. and Y.D. contributed climate modelling data. E.E.S. and H.Q. performed analyses. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Erin E. Saupe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Tables 1–5 and Figs. 1–18.

Supplementary Software 1

Description of the simulation framework and code, and how to download and implement it on your own system.

Supplementary Data 1

Species-level output on extinction status from the simulations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saupe, E.E., Qiao, H., Donnadieu, Y. et al. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nat. Geosci. 13, 65–70 (2020). https://doi.org/10.1038/s41561-019-0504-6

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing