Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Infrasound from giant bubbles during explosive submarine eruptions

Abstract

Shallow submarine volcanoes pose unique scientific and monitoring challenges. The interaction between water and magma can create violent explosions just below the surface, but the inaccessibility of submerged volcanoes means they are typically not instrumented. This both increases the risk to marine and aviation traffic and leaves the underlying eruption physics poorly understood. Here we use low-frequency sound in the atmosphere (infrasound) to examine the source mechanics of shallow submarine explosions from Bogoslof volcano, Alaska. We show that the infrasound originates from the oscillation and rupture of magmatic gas bubbles that initially formed from submerged vents, but that grew and burst above sea level. We model the low-frequency signals as overpressurized gas bubbles that grow near the water–air interface, which require bubble radii of 50–220 m. Bubbles of this size and larger have been described in explosive subaqueous eruptions for more than a century, but we present a unique geophysical record of this phenomenon. We propose that the dominant role of seawater during the effusion of gas-rich magma into shallow water is to repeatedly produce a gas-tight seal near the vent. This resealing mechanism leads to sequences of violent explosions and the release of large, bubble-forming volumes of gas—activity we describe as hydrovulcanian.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Map of Bogoslof volcano and two satellite images of the partially submerged summit and crater during the eruption.
Fig. 2: Infrasound signals from an explosive eruption of Bogoslof on 13 June 2017.
Fig. 3: Results from modelling the Bogoslof infrasound signals as bubble oscillations.
Fig. 4: Schematic cartoon of the bubble cycle and stages of a hydrovulcanian explosion.

Data availability

Observations of volcanic activity were made by AVO and are detailed on its website (www.avo.alaska.edu/volcanoes/volcinfo.php?volcname=Bogoslof). The infrasound data analysed in this study are available for download from the IRIS-DMC (http://ds.iris.edu/mda/AV/) or from the corresponding author upon request.

References

  1. Mastin, L. G. & Witter, J. B. The hazards of eruptions through lakes and seawater. J. Volcanol. Geotherm. Res. 97, 195–214 (2000).

    Article  Google Scholar 

  2. Embley, R. W. et al. Long-term eruptive activity at a submarine arc volcano. Nature 441, 494–497 (2006).

    Article  Google Scholar 

  3. White, J. D. L., Smellie, J. L. & Clague, D. A. in Explosive Subaqueous Volcanism (eds White, J. D. L., Smellie, J. L. & Clague, D. A.) 1–23 (American Geophysical Union, 2013).

  4. Green, D. N. et al. Hydroacoustic, infrasonic and seismic monitoring of the submarine eruptive activity and sub-aerial plume generation at South Sarigan, May 2010. J. Volcanol. Geotherm. Res. 257, 31–43 (2013).

    Article  Google Scholar 

  5. Fiske, R. S., Cashman, K. V., Shibata, A. & Watanabe, K. Tephra dispersal from Myojinsho, Japan, during its shallow submarine eruption of 1952–1953. Bull. Volcanol. 59, 262–275 (1998).

    Article  Google Scholar 

  6. Kano, K. in Explosive Subaqueous Volcanism (eds White, J. D. L., Smellie, J. L. & Clague, D. A.) 213–229 (American Geophysical Union, 2013).

  7. Wohletz, K. H. Explosive magma–water interactions: thermodynamics, explosion mechanisms, and field studies. Bull. Volcanol. 48, 245–264 (1986).

    Article  Google Scholar 

  8. Schipper, C. I. & White, J. D. L. Magma–slurry interaction in Surtseyan eruptions. Geology 44, 195–198 (2016).

    Article  Google Scholar 

  9. Ichihara, M. et al. Airwaves generated by an underwater explosion: implications for volcanic infrasound. J. Geophys. Res. 114, B03210 (2009).

    Article  Google Scholar 

  10. Zimanowski, B., Biittner, R., Lorenz, V. & Häbulletifele, H.-G. Fragmentation of basaltic melt in the course of explosive volcanism. J. Geophys. Res. 102, 803–814 (1997).

    Article  Google Scholar 

  11. Morrissey, M., Gisler, G., Weaver, R. & Gittings, M. Numerical model of crater lake eruptions. Bull. Volcanol. 72, 1169–1178 (2010).

    Article  Google Scholar 

  12. Morimoto, R. & Ossaka, J. The 1952–1953 submarine eruption of the Myojin Reef near the Bayonnaise Rocks, Japan. Tokyo Univ. Earthq. Res. Inst. Bull. 33, 221–250 (1955).

    Google Scholar 

  13. Belousov, A. & Belousova, M. in Volcaniclastic Sediment. Lacustrine Settings (eds White, J.D.L. & Riggs, N. R.) 35–60 (Wiley, 2009).

  14. Thorarinsson, S. The Surtsey Eruption: Course of the Events and the Development of the New Island. Surtsey Research Progress Report 1 (Surtsey Research Society, 1965).

  15. Watts, A. B. et al. Rapid rates of growth and collapse of Monowai submarine volcano in the Kermadec Arc. Nat. Geosci. 5, 510–515 (2012).

    Article  Google Scholar 

  16. Metz, D., Watts, A. B., Grevemeyer, I., Rodgers, M. & Paulatto, M. Ultra-long-range hydroacoustic observations of submarine volcanic activity at Monowai, Kermadec Arc. Geophys. Res. Lett. 43, 1529–1536 (2016).

    Article  Google Scholar 

  17. Cole, R. H. Underwater Explosions (Princeton Univ. Press, 1948).

  18. Kedrinskii, V. K. Hydrodynamics of Explosion: Experiments and Models (Springer, 2005).

  19. Fee, D. & Matoza, R. S. An overview of volcano infrasound: from Hawaiian to Plinian, local to global. J. Volcanol. Geotherm. Res. 249, 123–139 (2013).

    Article  Google Scholar 

  20. Johnson, J. B. & Ripepe, M. Volcano infrasound: a review. J. Volcanol. Geotherm. Res. 206, 61–69 (2011).

    Article  Google Scholar 

  21. Godin, O. A. Anomalous Transparency of water–air interface for low-frequency sound. Phys. Rev. Lett. 97, 164301 (2006).

    Article  Google Scholar 

  22. Evers, L. G. et al. Evanescent wave coupling in a geophysical system: airborne acoustic signals from the Mw 8.1 Macquarie Ridge earthquake. Geophys. Res. Lett. 41, 1644–1650 (2014).

    Article  Google Scholar 

  23. Ripepe, M. & Gordeev, E. Infrasonic waves and volcanic tremor at Stromboli. Geophys. Res. Lett. 23, 181–184 (1996).

    Article  Google Scholar 

  24. Rowe, C. A., Aster, R. C., Kyle, P. R., Dibble, R. R. & Schlue, J. W. Seismic and acoustic observations at Mount Erebus volcano, Ross Island, Antarctica, 1994-1998. J. Volcanol. Geotherm. Res. 101, 105–128 (2000).

    Article  Google Scholar 

  25. Vergniolle, S. & Brandeis, G. Strombolian explosions: 1. A large bubble breaking at the surface of a lava column as a source of sound. J. Geophys. Res. 101, 20433 (1996).

    Article  Google Scholar 

  26. Vergniolle, S. & Ripepe, M. From Strombolian explosions to fire fountains at Etna Volcano (Italy): what do we learn from acoustic measurements? Geol. Soc. Lond. Spec. Publ. 307, 103–124 (2008).

    Article  Google Scholar 

  27. Coombs, M. L. et al. Short-term forecasting and detection of explosions during the 2016–2017 eruption of Bogoslof volcano, Alaska. Front. Earth Sci. 6, 122 (2018).

    Article  Google Scholar 

  28. Haney, M. M. et al. Volcanic thunder from explosive eruptions at Bogoslof volcano, Alaska. Geophys. Res. Lett. 45, 3429–3435 (2018).

    Article  Google Scholar 

  29. Olson, J. V. & Szuberla, C. A. L. Distribution of wave packet sizes in microbarom wave trains observed in Alaska. J. Acoust. Soc. Am. 117, 1032–1037 (2005).

    Article  Google Scholar 

  30. Johnson, J. B., Aster, R. C. & Kyle, P. R. Volcanic eruptions observed with infrasound. Geophys. Res. Lett. 31, L14604 (2004).

    Article  Google Scholar 

  31. Vergniolle, S., Boichu, M. & Caplan-Auerbach, J. Acoustic measurements of the 1999 basaltic eruption of Shishaldin volcano, Alaska: 1. Origin of Strombolian activity. J. Volcanol. Geotherm. Res. 137, 109–134 (2004).

    Article  Google Scholar 

  32. Lighthill, J. Waves in Fluids (Cambridge Univ. Press, 1978).

  33. Vergniolle, S. & Brandeis, G. Origin of the sound generated by Strombolian explosions. Geophys. Res. Lett. 21, 1959–1962 (1994).

    Article  Google Scholar 

  34. Johnson, J., Aster, R., Jones, K. R., Kyle, P. & McIntosh, B. Acoustic source characterization of impulsive Strombolian eruptions from the Mount Erebus lava lake. J. Volcanol. Geotherm. Res. 177, 673–686 (2008).

    Article  Google Scholar 

  35. Gerst, A., Hort, M., Aster, R. C., Johnson, J. B. & Kyle, P. R. The first second of volcanic eruptions from the Erebus volcano lava lake, Antarctica—energies, pressures, seismology, and infrasound. J. Geophys. Res. Solid Earth 118, 3318–3340 (2013).

    Article  Google Scholar 

  36. Johnson, J. B. & Miller, A. J. C. Application of the monopole source to quantify explosive flux during vulcanian explosions at Sakurajima Volcano (Japan). Seismol. Res. Lett. 85, 1163–1176 (2014).

    Article  Google Scholar 

  37. Firstov, P. P. & Kravchenko, N. M. Estimation of the amount of explosive gas released in volcanic eruptions using air waves. Volcanol. Seismol. 17, 547–560 (1996).

    Google Scholar 

  38. Simojoki, H. On seiches in some lakes in Finland. Geophysica 7, 145–150 (1961).

    Google Scholar 

  39. Garcés, M. et al. Infrasound from large surf. Geophys. Res. Lett. 33, L05611 (2006).

    Article  Google Scholar 

  40. Bouche, E. et al. The role of large bubbles detected from acoustic measurements on the dynamics of Erta ′Ale lava lake (Ethiopia). Earth Planet. Sci. Lett. 295, 37–48 (2010).

    Article  Google Scholar 

  41. Kobayashi, T., Namiki, A. & Sumita, I. Excitation of airwaves caused by bubble bursting in a cylindrical conduit: experiments and a model. J. Geophys. Res. Solid Earth 115, B10201 (2010).

    Article  Google Scholar 

  42. Plesset, M. S. & Prosperetti, A. Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145–185 (1977).

    Article  Google Scholar 

  43. Leighton, T. G. The Acoustic Bubble (Academic, 1994).

  44. Lu, N. Q., Oguz, H. N. & Prosperetti, A. The oscillations of a small floating bubble. Phys. Fluids A Fluid Dyn. 1, 252–260 (1989).

    Article  Google Scholar 

  45. Cheminée, J. L. et al. Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount. Earth Planet. Sci. Lett. 107, 318–327 (1991).

    Article  Google Scholar 

  46. Rubin, K. H. & Macdougall, J. D. Submarine magma degassing and explosive magmatism at Macdonald (Tamarii) seamount. Nature 341, 50–52 (1989).

    Article  Google Scholar 

  47. Waythomas, C. F. & Cameron, C. Historical Eruptions and Hazards at Bogoslof Volcano Alaska U.S. Science Investigation Report 2018-5085 (US Geological Survey, 2018).

  48. Prosser, W. T. Nature turned sorceress. Tech. World Mag. XV, 64–68 (1911).

    Google Scholar 

  49. Iezzi, A.M., Schwaiger, H. F., Fee, D. & Haney, M. Application of an updated atmospheric model to explore volcano infrasound propagation and detection in Alaska. J. Volcanol. Geotherm. Res. 371, 192–205 (2018).

    Article  Google Scholar 

  50. Krieger, J. R. & Chahine, G. L. Acoustic signals of underwater explosions near surfaces. J. Acoust. Soc. Am. 118, 2961–2974 (2005).

    Article  Google Scholar 

  51. Ripepe, M. & Marchetti, E. Array tracking of infrasonic sources at Stromboli volcano. Geophys. Res. Lett. 29, 33-1–33–4 (2002).

    Article  Google Scholar 

  52. Chouet, B. et al. Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment–tensor inversions of very-long-period data. J. Geophys. Res. Solid Earth 108, ESE 7-1–ESE 7-25 (2003).

    Article  Google Scholar 

  53. Fee, D. et al. Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: evaluation at Sakurajima Volcano, Japan. Earth Planet. Sci. Lett. 480, 42–52 (2017).

    Article  Google Scholar 

  54. Ripepe, M. & Harris, A. Dynamics of the 5 April 2003 explosive paroxysm observed at Stromboli by a near-vent thermal, seismic and infrasonic array. Geophys. Res. Lett. 35, L07306 (2008).

    Article  Google Scholar 

  55. Wech, A., Tepp, G., Lyons, J. & Haney, M. Using earthquakes, T waves, and infrasound to investigate the eruption of Bogoslof Volcano, Alaska. Geophys. Res. Lett. 45, 6918–6925 (2018).

    Article  Google Scholar 

  56. Wohletz, K., Zimanowski, B. & Büttner, R. in Modeling Volcanic Processes: The Physics and Mathematics of Volcanism (eds Fagents, S. A., Gregg, T. K. P. & Lopes, R. M. C.) 230–257 (Cambridge Univ. Press, 2013).

  57. Sheridan, M. F. & Wohletz, K. H. Hydrovolcanic explosions: the systematics of water–pyroclast equilibration. Science 212, 1387–1389 (1981).

    Article  Google Scholar 

  58. Kokelaar, B. P. The mechanism of Surtseyan volcanism. J. Geol. Soc. Lond. 140, 939–944 (1983).

    Article  Google Scholar 

  59. Clarke, A. B.in Modeling Volcanic Processes: The Physics and Mathematics of Volcanism (eds Fagents, S. A., Gregg, T. K. P. & Lopes, R. M. C.) 129–152 (Cambridge Univ. Press, 2013); https://doi.org/10.1017/CBO9781139021562.007

  60. Albert, S., Fee, D., Firstov, P., Makhmudov, E. & Izbekov, P. Infrasound from the 2012–2013 Plosky Tolbachik, Kamchatka fissure eruption. J. Volcanol. Geotherm. Res. 307, 68–78 (2015).

    Article  Google Scholar 

  61. Dalton, M. P., Waite, G. P., Watson, I. M. & Nadeau, P. A. Multiparameter quantification of gas release during weak Strombolian eruptions at Pacaya Volcano, Guatemala. Geophys. Res. Lett. 37, L09303 (2010).

    Article  Google Scholar 

  62. Kim, K., Fee, D., Yokoo, A. & Lees, J. M. Acoustic source inversion to estimate volume flux from volcanic explosions. Geophys. Res. Lett. 42, 5243–5249 (2015).

    Article  Google Scholar 

  63. Kim, K., Lees, J. M. & Ruiz, M. Acoustic multipole source model for volcanic explosions and inversion for source parameters. Geophys. J. Int. 191, 1192–1204 (2012).

    Article  Google Scholar 

  64. Matoza, R. S., Fee, D., Neilsen, T. B., Gee, K. L. & Ogden, D. E. Aeroacoustics of volcanic jets: acoustic power estimation and jet velocity dependence. J. Geophys. Res. Solid Earth 118, 6269–6284 (2013).

    Article  Google Scholar 

  65. McKee, K., Fee, D., Yokoo, A., Matoza, R. S. & Kim, K. Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan. J. Volcanol. Geotherm. Res. 340, 16–29 (2017).

    Article  Google Scholar 

  66. Woulff, G. & McGetchin, T. R. Acoustic noise from volcanoes: theory and experiment. Geophys. J. R. Astron. Soc. 45, 601–616 (1976).

    Article  Google Scholar 

  67. Vergniolle, S. & Caplan-Auerbach, J. Basaltic thermals and subplinian plumes: constraints from acoustic measurements at Shishaldin volcano, Alaska. Bull. Volcanol. 68, 611–630 (2006).

    Article  Google Scholar 

  68. Caplan-Auerbach, J., Bellesiles, A. & Fernandes, J. K. Estimates of eruption velocity and plume height from infrasonic recordings of the 2006 eruption of Augustine Volcano, Alaska. J. Volcanol. Geotherm. Res. 189, 12–18 (2010).

    Article  Google Scholar 

  69. Ripepe, M. et al. Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: the 2010 Eyjafjallajökull eruption. Earth Planet. Sci. Lett. 366, 112–121 (2013).

    Article  Google Scholar 

  70. Delle Donne, D. & Ripepe, M. High-frame rate thermal imagery of strombolian explosions: implications for explosive and infrasonic source dynamics. J. Geophys. Res. Solid Earth 117, B09206 (2012).

    Article  Google Scholar 

  71. Kinney, G. F. & Graham, K. J. Explosive Shocks in Air 2nd edn (Springer, 1985).

  72. Morrissey, M. M. & Chouet, B. A. Burst conditions of explosive volcanic eruptions recorded on microbarographs. Science 275, 1290–1293 (1997).

    Article  Google Scholar 

  73. Ichinose, G., Anderson, J. G., Schweickert, R. A. & Lahren, M. M. The potential hazard from tsunami and seiche waves generated by large earthquakes within Lake Tahoe, California–Nevada. Geophys. Res. Lett. 27, 1203–1206 (2000).

    Article  Google Scholar 

  74. Walter, F., Olivieri, M. & Clinton, J. F. Calving event detection by observation of seiche effects on the Greenland fjords. J. Glaciol. 59, 162–178 (2013).

    Article  Google Scholar 

  75. Rueda, F. J. & Schladow, S. G. Surface seiches in lakes of complex geometry. Limnol. Oceanogr. 47, 906–910 (2002).

    Article  Google Scholar 

  76. Lacanna, G. et al. Influence of atmospheric structure and topography on infrasonic wave propagation. J. Geophys. Res. Solid Earth 119, 2988–3005 (2014).

    Article  Google Scholar 

  77. Pierce, A. D. Acoustics—An Introduction to Its Physical Principles and Applications (McGraw-Hill, 1981).

Download references

Acknowledgements

The authors thank AVO staff members for their contributions to the data presented here and numerous discussions about the Bogoslof activity during and following the eruption. Thanks to O. Lamb, L. Mastin and S. Vergniolle for insightful comments that helped refine the paper. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

J.J.L., M.M.H., D.F. and A.G.W. initiated the study and guided the investigation. J.J.L. and M.M.H. processed the data and performed the numerical modeling. A.G.W. and J.J.L. produced the map in Fig. 1a and C.F.W. processed the images for Fig. 1b,c. J.J.L. wrote the manuscript with input from all the co-authors.

Corresponding author

Correspondence to John J. Lyons.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor(s): Melissa Plail; Rebecca Neely.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lyons, J.J., Haney, M.M., Fee, D. et al. Infrasound from giant bubbles during explosive submarine eruptions. Nat. Geosci. 12, 952–958 (2019). https://doi.org/10.1038/s41561-019-0461-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0461-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing