Dome formation on Ceres by solid-state flow analogous to terrestrial salt tectonics

Article metrics

Abstract

The dwarf planet Ceres’s outer crust is a complex, heterogeneous mixture of ice, clathrates, salts and silicates. Numerous large domes on Ceres’s surface indicate a degree of geological activity. These domes have been attributed to cryovolcanism, but that is difficult to reconcile with Ceres’s small size and lack of long-lived heat sources. Here we alternatively propose that Ceres’s domes form by solid-state flow within the compositionally heterogeneous crust, a mechanism directly analogous to salt tectonics on Earth. We use numerical simulations to illustrate that differential loading of a crust with compositional heterogeneity on a scale of tens of kilometres can produce dome-like features of scale similar to those observed. The mechanism requires the presence of low-viscosity and low-density, possibly ice-rich, material in the upper 1–10 km of the subsurface. Such substantial regional heterogeneity in Ceres’s crustal composition is consistent with observations from the National Aeronautics and Space Administration’s Dawn mission. We conclude that deformation analogous to that in terrestrial salt tectonics is a viable alternative explanation for the observed surface morphologies, and is consistent with Ceres being both cold and geologically active.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Ceres’s domes (concentrated between 270° and 15° E) give the surface a distinctive, lumpy appearance.
Fig. 2: Reference simulation evaluating the effectiveness of differential gravitational loading due to lateral variations in the thickness of a subsurface layer of LVLD material (case 1).
Fig. 3: Dome amplitude as a function of time for several case 1 simulations.
Fig. 4: Reference simulation evaluating the effectiveness of surface topography in generating differential gravitational loading of a uniform buried layer (case 2).

Data availability

All data used in the study are available in NASA’s Planetary Data System archive (Small Bodies Node: https://pds-smallbodies.astro.umd.edu/).

Code availability

The original Tekton2.3 source code used in the simulations presented is no longer publicly available. Please contact the corresponding author for additional information.

References

  1. 1.

    Hiesinger, H. et al. Cratering on Ceres: implications for its crust and evolution. Science 353, aaf4759 (2016).

  2. 2.

    Buczkowski, D. L. et al. The geomorphology of Ceres. Science 353, aaf4332 (2016).

  3. 3.

    Schmidt, B. E. et al. Geomorphological evidence for ground ice on dwarf planet Ceres. Nat. Geo. 10, 338–343 (2017).

  4. 4.

    Sizemore, H. G. et al. A global inventory of ice-related morphological features on dwarf planet Ceres: implications for the evolution and current state of the cryosphere. J. Geophys. Res. 124, 1650–1689 (2019).

  5. 5.

    Ruesch, O. et al. Cryovolcanism on Ceres. Science 353, aaf4286 (2016).

  6. 6.

    Sori, M. M. et al. The vanishing cryovolcanoes of Ceres. Geophys. Res. Lett. 44, 1243–1250 (2017).

  7. 7.

    Sori, M. M. et al. Cryovolcanic rates on Ceres revealed by topography. Nat. Astro. 2, 946–950 (2018).

  8. 8.

    Bland, M. T. Predicted crater morphologies on Ceres: probing internal structure and evolution. Icarus 226, 510–521 (2013).

  9. 9.

    Castillo-Rogez, J. C. et al. Conditions for the long-term preservation of a deep brine reservoir in Ceres. Geophys. Res. Lett. 46, 1963–1972 (2018).

  10. 10.

    Ermakov, A. I. et al. Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft. J. Geophys. Res. 122, 1–27 (2017).

  11. 11.

    Bland, M. T. et al. Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nat. Geo. 9, 538–542 (2016).

  12. 12.

    Fu, R. R. et al. The interior structure of Ceres as revealed by surface topography. Earth Planet. Sci. Lett. 476, 153–164 (2017).

  13. 13.

    Combe, J.-P. et al. Detection of local H2O exposed at the surface of Ceres. Science 353, aaf3010 (2016).

  14. 14.

    Hughson, K. H. G. et al. The Ac-5 (Fejokoo) quadrangle of Ceres: geologic map and geomorphological evidence for ground ice mediated surface processes. Icarus 316, 63–83 (2018).

  15. 15.

    Bland, M. T. et al. Morphological indicators of a mascon beneath Ceres’s largest crater, kerwan. Geophys. Res. Lett. 45, 1297–1304 (2018).

  16. 16.

    Ammannito, E. et al. Distribution of phyllosilicates on the surface of Ceres. Science 353, aaf4279 (2016).

  17. 17.

    Peel, F. J., Travis, C. J. & Hossack, J. R. in Salt Tectonics: A Global Perspective (eds Jackson, M. P. A. et al.) 153–175 (AAPG, 1995).

  18. 18.

    Jackson, M. P. A. et al. Salt Diapirs of the Great Kavir, Central Iran (Geological Society of America, 1990).

  19. 19.

    Hudec, M. R. & Jackson, M. P. A. Terra infirma: understanding salt tectonics. Earth Sci. Rev. 82, 1–28 (2007).

  20. 20.

    Jackson, M. P. A. in Salt Tectonics: A Global Perspective (eds Jackson, M. P. A. et al.) 1–28 (AAPG, 1995).

  21. 21.

    Jackson, M. P. A. Conceptual Breakthroughs in Salt Tectonics: A Historical Review, 1856–1993 (Univ. Texas at Austin, Bureau of Economic Geology, 1997).

  22. 22.

    Scully, J. E. C. et al. Evidence for the interior evolution of Ceres from geologic analysis of fractures. Geophys. Res. Lett. 44, 9564–9572 (2017).

  23. 23.

    Buczkowski, D. L. et al. Floor-fractured craters on Ceres and implications for interior processes. J. Geophys. Res. 123, 3188–3204 (2018).

  24. 24.

    Melosh, H. J. & Raefsky, A. The dynamical origin of subduction zone topography. Geophys. J. Int. 60, 333–334 (1980).

  25. 25.

    Schultz-Ela, D. D., Jackson, M. P. A. & Vendeville, B. C. Mechanics of active salt diapirism. Tectonophysics 228, 275–312 (1993).

  26. 26.

    Castillo-Rogez, J. C. et al. Insights into Ceres’s evolution from surface composition. Meteorit. Planet. Sci. 53, 1820–1843 (2018).

  27. 27.

    Schreiber, B. C. & El Tabakh, M. Deposition and early alteration of evaporites. Sedimentology 47, 215–238 (2000).

  28. 28.

    Quick, L. et al. A possible brine reservoir beneath occator crater: thermal and compositional evolution and formation of the Cerealia dome and Vinalia faculae. Icarus 320, 119–135 (2018).

  29. 29.

    Ruesch, O. et al. Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. Icarus 320, 39–48 (2019).

  30. 30.

    Marchi, S. et al. The missing large impact craters on Ceres. Nat. Commun. 7, 12257 (2016).

  31. 31.

    Jutzi, M., Asphaug, E., Gillet, P., Barrat, J.-A. & Benz, W. The structure of the asteroid 4 Vesta as reveled by models of planet-scale collisions. Nature 494, 207–210 (2013).

  32. 32.

    Park, R. S. et al. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016).

  33. 33.

    Bowling, T. J. et al. Post-impact thermal structure and cooling timescale of Occator crater on asteroid 1 Ceres. Icarus 320, 110–118 (2019).

  34. 34.

    Vendeville, B. C. & Jackson, M. P. A. The rise of diapirs during thin-skinned extension. Mar. Pet. Geol. 9, 331–354 (1992).

  35. 35.

    Weijermars, R., Jackson, M. P. A. & Vendeville, B. Rheological and tectonic modeling of salt diapirs. Tectonophysics 217, 143–174 (1993).

  36. 36.

    Zambon, F. et al. Spectral analysis of Ahuna Mons from Dawn mission’s visible-infrared spectrometer. Geophys. Res. Lett. 44, 97–104 (2016).

  37. 37.

    Durham, W. B. & Stern, L. A. Rheological properties of water ice: applications to satellites of the outer planets. Annu. Rev. Earth Planet. Sci. 28, 295–330 (2001).

  38. 38.

    Durham, W. B., Pathare, A. V., Stern, L. A. & Lenferink, H. J. Mobility of icy sand packs, with application to Martian permafrost. Geophys. Res. Lett. 36, L23203 (2009).

  39. 39.

    Mangold, N., Allemand, P., Duval, P., Geraud, Y. & Thomas, P. Experimental and theoretical deformation of ice-rock mixtures: implications on rheology and ice content of Martian permafrost. Planet. Space Sci. 50, 385–401 (2002).

Download references

Acknowledgements

This work was supported by the National Aeronautics and Space Administration’s (NASA’s) Dawn Guest Investigator Program (grant no. NNH15AZ85I). Some of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Special thanks to the Dawn mission operations team, who have gone above and beyond to return exceptional data from Ceres. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

M.T.B. performed the numerical simulations and drafted the manuscript. D.L.B. and H.G.S provided detailed comments on the text and morphological information for Ceres’s large domes. A.I.E. and S.D.K. provided modelling of the gravity anomaly associated with subsurface density variations. M.M.S. and J.C.C.-R. provided insight into cryovolcanism on Ceres and comments on the text. C.A.R. provided insight into Ceres crustal heterogeneity. C.T.R. and C.A.R. are responsible for the success of the Dawn mission and provided data access.

Correspondence to M. T. Bland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor(s): S. Lachowycz

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary material and Figs. 1–17.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bland, M.T., Buczkowski, D.L., Sizemore, H.G. et al. Dome formation on Ceres by solid-state flow analogous to terrestrial salt tectonics. Nat. Geosci. 12, 797–801 (2019) doi:10.1038/s41561-019-0453-0

Download citation

Further reading