Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Early evolution of a young back-arc basin in the Havre Trough

Subjects

Abstract

Back-arc basins are found at convergent plate boundaries. Nevertheless, they are zones of significant crustal extension that show volcanic and hydrothermal processes somewhat similar to those of mid-ocean ridges. Accepted models imply the initial rifting and thinning of a pre-existing volcanic arc until seafloor spreading gradually develops over timescales of a few million years. The Havre Trough northeast of New Zealand is a unique place on Earth where the early stages of back-arc basin formation are well displayed in the recent geological record. Here we present evidence that, in this region, rifting of the original volcanic arc occurred in a very narrow area about 10–15 km wide, which could only accommodate minimal stretching for a very short time before mass balance required oceanic crustal accretion. An initial burst of seafloor spreading started around 5.5–5.0 million years ago and concluded abruptly about 3.0–2.5 million years ago, after which arc magmatism dominated the crustal accretion. The sudden transition between these different tectonomagmatic regimes is linked to trench rollback promoted by gradual sinking of the subducting lithosphere, which could have diverted the arc flux outside the region of seafloor spreading and induced the vertical realignment of surface volcanism with the source of arc melts at depth.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Location map of the Havre Trough and subduction of the Pacific Plate underneath the Australian Plate.
Fig. 2: Bathymetric and geophysical maps of the Havre Trough.
Fig. 3: Multichannel seismic section M4 from the MANGO experiment28.
Fig. 4: Geophysical models of the Havre Trough along the three continuous lines in Fig. 1.
Fig. 5: Conceptual model of the Havre Trough opening, section view (left) and map sketch (right).

Data availability

The survey magnetic data can be downloaded from the NGDC database https://ngdc.noaa.gov/mgg/geodas/trackline.html. The gravity data derived from satellite altimetry can be downloaded from https://topex.ucsd.edu/marine_grav/mar_grav.html. The regional bathymetry grid shown in Fig. 1 can be downloaded from https://www.niwa.co.nz/our-science/oceans/bathymetry. The high-resolution bathymetry and geophysical grids used in this study are available from the corresponding author upon request.

References

  1. 1.

    Karig, D. E. Ridges and basins of the Tonga–Kermadec island arc system. J. Geophys. Res. 75, 239–254 (1970).

    Article  Google Scholar 

  2. 2.

    Packham, G. H. & Falvey, D. A. An hypothesis for the formation of marginal seas in the western Pacific. Tectonophysics 11, 79–109 (1971).

    Article  Google Scholar 

  3. 3.

    Molnar, P. & Atwater, T. Interarc spreading and Cordilleran tectonics as alternates related to the age of subducted oceanic lithosphere. Earth Planet. Sci. Lett. 41, 330–340 (1978).

    Article  Google Scholar 

  4. 4.

    Martinez, F. & Taylor, B. in Back-arc Spreading Systems: Geological, Biological, Chemical and Physical Interactions (eds Christie, D. M. et al.) 5–30 (Geophysics Monograph Series 166, American Geophysical Union, 2006).

  5. 5.

    Dunn, R. & Martinez, F. Contrasting crustal production and rapid mantle transitions beneath back-arc ridges. Nature 469, 198–202 (2011).

    Article  Google Scholar 

  6. 6.

    Martinez, F., Fryer, P., Baker, N. A. & Yamazaki, T. Evolution of backarc rifting: Mariana Trough, 20°–24° N. J. Geophys. Res. 100, 3807–3827 (1995).

    Article  Google Scholar 

  7. 7.

    Martinez, F. & Taylor, B. Mantle wedge control on back-arc crustal accretion. Nature 416, 417–421 (2002).

    Article  Google Scholar 

  8. 8.

    Taylor, B., Zellmer, K., Martinez, F. & Goodliffe, A. Sea-floor spreading in the Lau back-arc basin. Earth Planet. Sci. Lett. 144, 35–40 (1996).

    Article  Google Scholar 

  9. 9.

    Timm, C. et al. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc. Nat. Commun. 5, 4923 (2014).

    Article  Google Scholar 

  10. 10.

    Fujiwara, T., Yamazaki, T. & Joshima, M. Bathymetry and magnetic anomalies in the Havre Trough and southern Lau Basin: from rifting to spreading in back-arc basins. Earth Planet. Sci. Lett. 185, 253–264 (2001).

    Article  Google Scholar 

  11. 11.

    Delteil, J., Ruellan, E., Wright, I. & Matsumoto, T. Structure and structural development of the Havre Trough (SW Pacific). J. Geophys. Res. 107, 21043–22106 (2002).

    Article  Google Scholar 

  12. 12.

    Caress, D. Structural trends and back-arc extension in the Havre Trough. Geophys. Res. Lett. 18, 853–856 (1991).

    Article  Google Scholar 

  13. 13.

    Wright, I. Pre-spread rifting and heterogeneous volcanism in the Southern Havre Trough back-arc basin. Mar. Geol. 113, 179–200 (1993).

    Article  Google Scholar 

  14. 14.

    Wright, I. Nature and tectonic setting of the southern Kermadec submarine arc volcanoes: an overview. Mar. Geol. 118, 217–236 (1994).

    Article  Google Scholar 

  15. 15.

    Parson, L. & Wright, I. The Lau–Havre–Taupo back-arc-basin: a southward-propagating, multi-stage evolution from rifting to spreading. Tectonophysics 263, 1–22 (1996).

    Article  Google Scholar 

  16. 16.

    Stern, T. A. Asymmetric back-arc spreading, heat flux and structure associated with the Central Volcanic Region of New Zealand. Earth Planet. Sci. Lett. 85, 265–276 (1987).

    Article  Google Scholar 

  17. 17.

    Wright, I., Parson, L. & Gamble, J. Evolution and interaction of migrating cross-arc volcanism and back-arc rifting: an example from the Southern Havre Trough (35° 20′–37° S). J. Geophys. Res. 101, 22071–22086 (1996).

    Article  Google Scholar 

  18. 18.

    Ballance et al. Morphology and history of the Kermadec trench–arc–backarc basin–remnant arc system at 30 to 32° S: geophysical profile, microfossil and K–Ar data. Mar. Geol. 159, 35–62 (1993).

    Article  Google Scholar 

  19. 19.

    Ruellan, E., Delteil, J., Wright, I. & Matsumoto, T. From rifting to active spreading in the Lau Basin–Havre Trough backarc system (SW Pacific): locking/unlocking induced by seamount chain subduction. Geochem. Geophys. Geosyst. 4, 8909–8930 (2003).

    Article  Google Scholar 

  20. 20.

    Seebeck, H., Nicol, A., Giba, M., Pettinga, J. & Walsh, J. Geometry of the subducting Pacific plate since 20 Ma, Hikurangi margin, New Zealand. J. Geol. Soc. Lond. 171, 131–143 (2014).

    Article  Google Scholar 

  21. 21.

    Seebeck, H., Nicol, A., Villamor, P., Ristau, J. & Pettinga, J. Structure and kinematics of the Taupo Rift, New Zealand. Tectonics 33, 1178–1199 (2014).

    Article  Google Scholar 

  22. 22.

    Walcott, R. I. The kinematics of the plate boundary zone through New Zealand: a comparison of short and long-term deformation. Geophys. J. R. Astron. Soc. 79, 613–633 (1984).

    Article  Google Scholar 

  23. 23.

    Darby, D. J. & Williams, R. O. A new geodetic estimate of deformation in the Central Volcanic Region of the North Island, New Zealand. New Zeal. J. Geol. Geophys. 34, 127–136 (1991).

    Article  Google Scholar 

  24. 24.

    Pelletier, B. & Loutat, R. Seismotectonics and present-day relative plate motions in the Tonga–Lau and Kermadec–Havre region. Tectonophysics 165, 237–250 (1989).

    Article  Google Scholar 

  25. 25.

    Davey, F. J., Henrys, S. & Lodolo, E. Asymmetric rifting in a continental back-arc environment, North Island, New Zealand. J. Volcanol. Geotherm. Res. 68, 209–238 (1995).

    Article  Google Scholar 

  26. 26.

    Wallace, L. M., Ellis, S. & Mann, P. Collisional model for rapid fore-arc block rotations, arc curvature, and episodic back-arc rifting in subduction settings. Geochem. Geophys. Geosyst. 10, Q05001 (2009).

    Google Scholar 

  27. 27.

    Timm, C. et al. New age and geochemical data from the southern Colville and Kermadec ridges, SW Pacific: insights into the recent geological history and petrogenesis of the Proto-Kermadec (Vitiaz) Arc. Gondwana Res. 72, 169–193 (2019).

    Article  Google Scholar 

  28. 28.

    Bassett, D. et al. Crustal structure of the Kermadec arc from MANGO seismic refraction profiles. J. Geophys. Res. 121, 7514–7546 (2016).

    Article  Google Scholar 

  29. 29.

    Malahoff, A., Feden, R. & Fleming, H. Magnetic anomalies and tectonic fabric of marginal basins north of New Zealand. J. Geophys. Res. 87, 4109–4125 (1982).

    Article  Google Scholar 

  30. 30.

    Wysoczanski, R. J. et al. Backarc rifting, constructional volcanism and nascent disorganized spreading in the southern Havre Trough backarc rifts (SW Pacific). J. Volcanol. Geotherm. Res. 190, 39–57 (2010).

    Article  Google Scholar 

  31. 31.

    Todd, E. et al. Sources of constructional cross-chain volcanism in the southern Havre Trough: new insights from HFSE and REE concentration and isotope systematics. Geochem. Geophys. Geosyst. 7, Q04009 (2011).

    Google Scholar 

  32. 32.

    Wysoczanski, R. J., et al. Ar–Ar age constraints on the timing of Havre Trough opening and magmatism. New Zeal. J. Geol. Geophys. https://doi.org/10.1080/00288306.2019.1602059 (2019).

    Article  Google Scholar 

  33. 33.

    Pillans, B. & Wright, I. Late Quaternary tephrostratigraphy for the Southern Havre Trough–Bay of Plenty, northeast New Zealand. N. Zeal. J. Geol. Geophys. 35, 129–143 (1992).

    Article  Google Scholar 

  34. 34.

    Cronan, D. S., Hodkinson, R., Harkness, D. D., Moorby, S. A. & Glasby, G. P. Accumulation rates of hydrothermal metalliferous sediments in the Lau Basin, S.W. Pacific. Geo-Mar. Lett. 6, 51–56 (1986).

    Article  Google Scholar 

  35. 35.

    Cande, S. & Kent, D. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100, 6093–6095 (1995).

    Article  Google Scholar 

  36. 36.

    Sdrolias, M. & Müller, R. D. Controls on back-arc formation. Geochem. Geophys. Geosyst. 7, Q04016 (2006).

    Article  Google Scholar 

  37. 37.

    Heuret, A. & Lallemand, S. Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Inter. 149, 31–51 (2005).

    Article  Google Scholar 

  38. 38.

    Faccenna, C., Funiciello, D., Giardini, D. & Lucente, P. Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet. Sci. Lett. 187, 105–116 (2001).

    Article  Google Scholar 

  39. 39.

    Schellart, W. P. G., Lister, G. S. & Jessell, M. N. Analogue modelling of arc and backarc deformation in the New Hebrides Arc and North Fiji Basin. Geology 30, 311–314 (2002).

    Article  Google Scholar 

  40. 40.

    Billen, M. I. Modeling the dynamics of subducting slabs. Ann. Rev. Earth Planet. Sci. 36, 325–356 (2008).

    Article  Google Scholar 

  41. 41.

    Schellart, W. P. & Moresi, L. A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: results from dynamic subduction models with an overriding plate. J. Geophys. Res 118, 3221–3248 (2013).

    Article  Google Scholar 

  42. 42.

    Magni, V. The effects of back-arc spreading on arc magmatism. Earth Planet. Sci. Lett. 519, 141–151 (2019).

    Article  Google Scholar 

  43. 43.

    Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008).

    Article  Google Scholar 

  44. 44.

    Brothers, R. N. Subduction regression and oceanward migration of volcanism, North Island, New Zealand. Nature 309, 698–700 (1984).

    Article  Google Scholar 

  45. 45.

    Kamp, P. J. J. Neogene and Quaternary extent and geometry of the subducted Pacific Plate beneath North Island, New Zealand: implications for Kaikoura tectonics. Tectonophysics 108, 241–246 (1984).

    Article  Google Scholar 

  46. 46.

    Mortimer, N. et al. Location and migration of Miocene–Quaternary volcanic arcs in the SW Pacific region. J. Volcanol. Geotherm. Res. 190, 1–10 (2010).

    Article  Google Scholar 

  47. 47.

    Wright, I. C. Morphology and evolution of the remnant Colville and active Kermadec arc ridges south of 33° 30′ S. Mar. Geophys. Res. 19, 177–193 (1997).

    Article  Google Scholar 

  48. 48.

    Malinverno, A. & Ryan, W. B. F. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5, 227–245 (1986).

    Article  Google Scholar 

  49. 49.

    Nicolosi, I., Speranza, F. & Chiappini, M. Ultrafast oceanic spreading of the Marsili Basin, southern Tyrrhenian Sea: evidence from magnetic anomaly analysis. Geology 34, 717–720 (2006).

    Article  Google Scholar 

  50. 50.

    Sibuet, J. C. et al. Back arc extension in the Okinawa Trough. J. Geophys. Res. 92, 14041–14063 (1987).

    Article  Google Scholar 

  51. 51.

    Brune, S., Williams, S. E., Butterworth, N. P. & Müller, D. Abrupt plate accelerations shape rifted continental margins. Nature 536, 201–204 (2016).

    Article  Google Scholar 

  52. 52.

    Larsen, H. C. et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nat. Geosci. 11, 782–789 (2018).

    Article  Google Scholar 

  53. 53.

    O’ Neill, C. J., Müller, R. D. & Steinberger, B. On the uncertainties in hotspot reconstructions and the significance of moving hotspot reference frames. Geochem. Geophys. Geosyst. 6, Q04003 (2005).

    Article  Google Scholar 

  54. 54.

    Sandwell, D. T. & Smith, W. H. F. Marine gravity anomalies from Geosat and ERS 1 satellite altimetry. J. Geophys. Res. 102, 10039–10054 (1997).

    Article  Google Scholar 

  55. 55.

    Thébault, E. et al. International geomagnetic reference field: the 12th generation. Earth Planets Space 67, 79 (2015).

    Article  Google Scholar 

  56. 56.

    Baranov, V. & Naudy, H. Numerical calculation of the formula of reduction to the magnetic pole. Geophys 29, 67–79 (1964).

    Article  Google Scholar 

  57. 57.

    Briggs, I. C. Machine contouring using minimum curvature. Geophysics 39, 39–48 (1964).

    Article  Google Scholar 

  58. 58.

    Smith, W. H. F. & Wessel, P. Gridding with continuous curvature splines in tension. Geophysics 55, 293–305 (1990).

    Article  Google Scholar 

  59. 59.

    Ulrych, T. J. Maximum entropy power spectrum of truncated sinusoids. J. Geophys. Res. 77, 1396–1400 (1972).

    Article  Google Scholar 

  60. 60.

    Won, I. J. & Bevis, M. Computing the gravitational and magnetic anomalies due to polygon: algorithm and Fortran subroutines. Geophysics 52, 232–238 (1987).

    Article  Google Scholar 

  61. 61.

    Scherwath, M. et al. Fore-arc deformation and underplating at the northern Hikurangi margin, New Zealand. J. Geophys. Res. 115, B06408 (2010).

    Article  Google Scholar 

  62. 62.

    Barker, P. F. & Hill, I. A. Asymmetric spreading in back-arc basins. Nature 285, 652–654 (1980).

    Article  Google Scholar 

  63. 63.

    McKenzie, D. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 40, 25–32 (1978).

    Article  Google Scholar 

  64. 64.

    Beardsmore G. R. & Cull J. P. Crustal Heat Flow (Cambridge Univ. Press, 2001).

Download references

Acknowledgements

We acknowledge the captains and crews of RVs Yokosuka, Sonne, Tangaroa, Roger Revelle and Thompson for their hard work to support geophysical and bathymetry data acquisition. Funding from the New Zealand Government (Ministry of Business, Innovation and Employment) helped enable this study and assist scientists with cruise travels and survey operations. C.T. was partly funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 79308.

Author information

Affiliations

Authors

Contributions

F.C.T., C.E.J.D.R. and C.T. conceived the project and developed the conceptual model D.B. contributed to the seismic interpretation and to the conceptual model and R.W. contributed to the tectonic and volcanology interpretation. All the authors contributed to writing the manuscript.

Corresponding author

Correspondence to Fabio Caratori Tontini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and Supplementary tables.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caratori Tontini, F., Bassett, D., de Ronde, C.E.J. et al. Early evolution of a young back-arc basin in the Havre Trough. Nat. Geosci. 12, 856–862 (2019). https://doi.org/10.1038/s41561-019-0439-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing