Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology

Article metrics

Abstract

Storage pressures of magma chambers influence the style, frequency and magnitude of volcanic eruptions. Neutral buoyancy or rheological transitions are commonly assumed to control where magmas accumulate and form such chambers. However, the density of volatile-rich silicic magmas is typically lower than that of the surrounding crust, and the rheology of the crust alone does not define the depth of the brittle–ductile transition around a magma chamber. Yet, typical storage pressures inferred from geophysical inversions or petrological methods seem to cluster around 2 ± 0.5 kbar in all tectonic settings and crustal compositions. Here, we use thermomechanical modelling to show that storage pressure is controlled by volatile exsolution and crustal rheology. At pressures \(\lesssim\)1.5 kbar, and for geologically realistic water contents, chamber volumes and recharge rates, the presence of an exsolved magmatic volatile phase hinders chamber growth because eruptive volumes are typically larger than recharges feeding the system during periods of dormancy. At pressures \(>rsim\)2.5 kbar, the viscosity of the crust in long-lived magmatic provinces is sufficiently low to inhibit most eruptions. Sustainable eruptible magma reservoirs are able to develop only within a relatively narrow range of pressures around 2 ± 0.5 kbar, where the amount of exsolved volatiles fosters growth while the high viscosity of the crust promotes the necessary overpressurization for eruption.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A regime diagram showing the evolution of magma chambers at a pressure of 2 kbar.
Fig. 2: Regime diagrams of eruptible and growing chambers as a function of magma water content, depth, magma recharge rate and initial volume.
Fig. 3: Pressure distribution where melt/active magma reservoir is inferred from petrology or geophysical methods.
Fig. 4: A summary diagram comparing numerical simulations with geophysical and petrological data.

Data availability

The datasets generated during this study (outputs from numerical simulations) are available from the corresponding author on request.

Code availability

The code used to generate the magma chamber growth outputs can be accessed by contacting the corresponding author.

References

  1. 1.

    Hildreth, W. Gradients in silicic magma chambers: implications for lithospheric magmatism. J. Geophys. Res. 86, 10153–10192 (1981).

  2. 2.

    Lipman, P. W., Doe, B. & Hedge, C. Petrologic evolution of the San Juan volcanic field, southwestern Colorado: Pb and Sr isotope evidence. Geol. Soc. Am. Bull. 89, 59–82 (1978).

  3. 3.

    Bachmann, O. & Huber, C. Silicic magma reservoirs in the Earth’s crust. Am. Mineral. 101, 2377–2404 (2016).

  4. 4.

    Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).

  5. 5.

    Hildreth, W. S. & Moorbath, S. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 98, 455–499 (1988).

  6. 6.

    Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

  7. 7.

    Marsh, B. D. A magmatic mush column Rosetta Stone: the McMurdo Dry Valleys of Antarctica. EOS Trans. Am. Geophys. Union 85, 497–502 (2004).

  8. 8.

    Burchardt, S. New insights into the mechanics of sill emplacement provided by field observations of the Njardvik Sill, Northeast Iceland. J. Volcanol. Geotherm. Res. 173, 280–288 (2008).

  9. 9.

    Menand, T. Physical controls and depth of emplacement of igneous bodies: a review. Tectonophysics 500, 11–19 (2011).

  10. 10.

    Miller, C. F. et al. Growth of plutons by incremental emplacement of sheets in crystal-rich host: evidence from Miocene intrusions of the Colorado River region, Nevada, USA. Tectonophysics 500, 65–77 (2011).

  11. 11.

    Karlstrom, L., Paterson, S. R. & Jellinek, A. M. A reverse energy cascade for crustal magma transport. Nat. Geosci. 10, 604–608 (2017).

  12. 12.

    Lister, J. R. & Kerr, R. C. Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J. Geophys. Res. Solid Earth 96, 10049–10077 (1991).

  13. 13.

    Walker, G. P. L. Gravitational (density) controls on volcanism, magma chambers and intrusions. Aust. J. Earth Sci. 36, 149–165 (1989).

  14. 14.

    Gudmundsson, A. Magma chambers: formation, local stresses, excess pressures, and compartments. J. Volcanol. Geotherm. Res. 237–238, 19–41 (2012).

  15. 15.

    Rivalta, E., Taisne, B., Bunger, A. P. & Katz, R. F. A review of mechanical models of dike propagation: schools of thought, results and future directions. Tectonophysics 638, 1–42 (2015).

  16. 16.

    Burov, E., Jaupart, C. & Guillou-Frottier, L. Ascent and emplacement of buoyant magma bodies in brittle–ductile upper crust. J. Geophys. Res. 108, 2177 (2003).

  17. 17.

    Gregg, P. M., de Silva, S. L., Grosfils, E. B. & Parmigiani, J. P. Catastrophic caldera-forming eruptions: thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. J. Volcanol. Geotherm. Res. 241–242, 1–12 (2012).

  18. 18.

    Lowenstern, J. B., Smith, R. B. & Hill, D. P. Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems. Phil. Trans. R. Soc. A 364, 2055–2072 (2006).

  19. 19.

    Gettings, M. E. Variation of depth to the brittle–ductile transition due to cooling of a midcrustal intrusion. Geophys. Res. Lett. 15, 213–216 (1988).

  20. 20.

    Rubin, A. M. Dike ascent in partially molten rock. J. Geophys. Res. Solid Earth 103, 20901–20919 (1998).

  21. 21.

    Huppert, H. E. & Woods, A. W. The role of volatiles in magma chamber dynamics. Nature 420, 493–495 (2002).

  22. 22.

    Degruyter, W., Huber, C., Bachmann, O., Cooper, K. M. & Kent, A. J. R. Magma reservoir response to transient recharge events: the case of Santorini volcano (Greece). Geology 44, 23–26 (2016).

  23. 23.

    Degruyter, W., Huber, C., Bachmann, O., Cooper, K. M. & Kent, A. J. R. Influence of exsolved volatiles on reheating silicic magmas by recharge and consequences for eruptive style at Volcán Quizapu (Chile). Geochem. Geophys. Geosyst. 18, 4123–4135 (2017).

  24. 24.

    Forni, F., Degruyter, W., Bachmann, O., De Astis, G. & Mollo, S. Long-term magmatic evolution reveals the beginning of a new caldera cycle at Campi Flegrei. Sci. Adv. 4, eaat940 (2018).

  25. 25.

    Degruyter, W. & Huber, C. A model for eruption frequency of upper crustal silicic magma chambers. Earth Planet. Sci. Lett. 403, 117–130 (2014).

  26. 26.

    Hansen, F. D. & Carter, N. L. Semibrittle creep of dry and wet westerly granite at 1,000 MPa. In The 24th US Symposium on Rock Mechanics 20 (American Rock Mechanics Association, 1983).

  27. 27.

    Jellinek, A. M. & DePaolo, D. J. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull. Volcanol. 65, 363–381 (2003).

  28. 28.

    Karlstrom, L., Dufek, J. & Manga, M. Magma chamber stability in arc and continental crust. J. Volcanol. Geotherm. Res. 190, 249–270 (2010).

  29. 29.

    Johnson, M. C. & Rutherford, M. J. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley Caldera (California) volcanic rocks. Geology 17, 837–841 (1989).

  30. 30.

    Putirka, K. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am. Mineral. 101, 841–858 (2016).

  31. 31.

    Schmidt, M. W. Amphibole composition in tonalite as a function of pressure; an experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 110, 304–310 (1992).

  32. 32.

    Wallace, P. J., Anderson, A. T. & Davis, A. M. Quantification of pre-eruptive exsolved gas contents in silicic magmas. Nature 377, 612–615 (1995).

  33. 33.

    Baker, D. R. The fidelity of melt inclusions as records of melt composition. Contrib. Mineral. Petrol. 156, 377–395 (2008).

  34. 34.

    Blundy, J. D. & Cashman, K. V. Rapid decompression-driven crystallization recorded by melt inclusions from Mount St. Helens volcano. Geology 33, 793–796 (2005).

  35. 35.

    Lloyd, A. S., Plank, T., Ruprecht, P., Hauri, E. H. & Rose, W. Volatile loss from melt inclusions in pyroclasts of differing sizes. Contrib. Mineral. Petrol. 165, 129–153 (2013).

  36. 36.

    Wallace, P. in Melt Inclusions in Volcanic Systems: Methods, Applications and Problems Vol. 5 (eds De Vivo, B. & Bodnar, R. J.) 105–127 (Elsevier, 2003).

  37. 37.

    Bachmann, O., Wallace, P. J. & Bourquin, J. The melt inclusion record from the rhyolitic Kos Plateau Tuff (Aegean Arc). Contrib. Mineral. Petrol. 159, 187–202 (2010).

  38. 38.

    Lowenstern, J. B. in Melt Inclusions in Volcanic Systems: Methods, Applications and Problems Vol. 5 (eds De Vivo, B. & Bodnar, R. J.) 1–22 (Elsevier, 2003).

  39. 39.

    Wallace, P. J., Anderson, A. T. & Davis, A. M. Gradients in H2O, CO2, and exsolved gas in a large-volume silicic magma chamber: interpreting the record preserved in the melt inclusions from the Bishop Tuff. J. Geophys. Res. 104, 20097–20122 (1999).

  40. 40.

    Ague, J. J. Thermodynamic calculation of emplacement pressures for batholithic rocks, California; implications for the aluminum-in-hornblende barometer. Geology 25, 563–566 (1997).

  41. 41.

    Bachmann, O. & Dungan, M. A. Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. Am. Mineral. 87, 1062–1076 (2002).

  42. 42.

    Erdmann, S., Martel, C., Pichavant, M. & Kushnir, A. Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contrib. Mineral. Petrol. 167, 1–23 (2014).

  43. 43.

    Bedrosian, P. A., Peacock, J. R., Bowles-Martinez, E., Schultz, A. & Hill, G. J. Crustal inheritance and a top-down control on arc magmatism at Mount St Helens. Nat. Geosci. 11, 865–870 (2018).

  44. 44.

    Hata, M., Takakura, S., Matsushima, N., Hashimoto, T. & Utsugi, M. Crustal magma pathway beneath Aso caldera inferred from three-dimensional electrical resistivity structure. Geophys. Res. Lett. 43, 10,720–10,727 (2016).

  45. 45.

    Miller, C. A., Le Mével, H., Currenti, G., Williams-Jones, G. & Tikoff, B. Microgravity changes at the Laguna del Maule volcanic field: magma-induced stress changes facilitate mass addition. J. Geophys. Res. Solid Earth 122, 3179–3196 (2017).

  46. 46.

    Chaussard, E. & Amelung, F. Regional controls on magma ascent and storage in volcanic arcs. Geochem. Geophys. Geosyst. 15, 1407–1418 (2014).

  47. 47.

    Hurwitz, S., Kipp, K. L., Ingebritsen, S. E. & Reid, M. E. Groundwater flow, heat transport, and water table position within volcanic edifices: implications for volcanic processes in the Cascade Range. J. Geophys. Res. Solid Earth 108, 2557 (2003).

  48. 48.

    Holtz, F., Sato, H., Lewis, J. F., Behrens, H. & Nakada, S. Experimental petrology of the 1991–1995 Unzen Dacite, Japan. Part I: phase relations, phase composition and pre-eruptive conditions. J. Petrol. 46, 319–337 (2005).

  49. 49.

    Rutherford, M. J., Sigurdsson, H., Carey, S. & Davis, A. M. The May 18, 1980, eruption of Mount St. Helens, 1. Melt composition and experimental phase equilibria. J. Geophys. Res. 90, 2929–2947 (1985).

  50. 50.

    Scaillet, B., Holtz, F. & Pichavant, M. Experimental constraints on the formation of silicic magmas. Elements 12, 109–114 (2016).

  51. 51.

    Johnson, M. & Rutherford, M. Experimentally determined conditions in the Fish Canyon Tuff, Colorado, magma chamber. J. Petrol. 30, 711–737 (1989).

  52. 52.

    Scaillet, B. & Evans, B. W. The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P–TfO2fH2O conditions of the dacite magma. J. Petrol. 40, 381–411 (1999).

  53. 53.

    Kiser, E., Levander, A., Zelt, C., Schmandt, B. & Hansen, S. M. Focusing of melt near the top of the Mount St. Helens (USA) magma reservoir and its relationship to major volcanic eruptions. Geology 46, 775–778 (2018).

  54. 54.

    Huang, H.-H. et al. The Yellowstone magmatic system from the mantle plume to the upper crust. Science 348, 773–776 (2015).

  55. 55.

    Huang, Y.-C., Ohkura, T., Kagiyama, T., Yoshikawa, S. & Inoue, H. Shallow volcanic reservoirs and pathways beneath Aso caldera revealed using ambient seismic noise tomography. Earth Planets Space 70, 169 (2018).

  56. 56.

    Masturyono, McCaffrey, R., Wark, D. A. & Roecker, S. W. Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained by three-dimensional P wave velocities, seismicity, and gravity data. Geochem. Geophys. Geosyst. 2, 2000GC000096 (2001).

  57. 57.

    Fedi, M. et al. Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy. Sci. Rep. 8, 8229 (2018).

  58. 58.

    Andersen, N. L. et al. Pleistocene to Holocene growth of a large upper crustal rhyolitic magma reservoir beneath the active Laguna del Maule volcanic field, central Chile. J. Petrol. 58, 85–114 (2017).

  59. 59.

    Gualda, G. A. R. & Ghiorso, M. S. Low-pressure origin of high-silica rhyolites and granites. J. Geol. 121, 537–545 (2013).

  60. 60.

    Liu, Y., Zhang, Y. & Behrens, H. Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O–CO2 solubility in rhyolitic melts. J. Volcanol. Geotherm. Res. 143, 219–235 (2005).

  61. 61.

    Wallace, P. J. & Gerlach, T. M. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: evidence from Mount Pinatubo. Science 265, 497–499 (1994).

  62. 62.

    Chesner, C. A. & Luhr, J. F. A melt inclusion study of the Toba Tuffs, Sumatra, Indonesia. J. Volcanol. Geotherm. Res. 197, 259–278 (2010).

  63. 63.

    Lowenstern, J. B., Bacon, C. R., Calk, L. C., Hervig, R. L. & Aines, R. D. Major-Element, Trace-Element, and Volatile Concentrations in Silicate Melt Inclusions from the Tuff of Pine Grove, Wah Wah Mountains, Utah Open-File Report 94-242 (US Geological Survey, 1994).

  64. 64.

    Agostinetti, N. P. & Chiarabba, C. Seismic structure beneath Mt Vesuvius from receiver function analysis and local earthquakes tomography: evidences for location and geometry of the magma chamber. Geophys. J. Int. 175, 1298–1308 (2008).

  65. 65.

    Hata, M. et al. Three-dimensional electrical resistivity distribution beneath the Beppu–Shimabara graben with a focus on Aso caldera, Southwest Japan subduction zone. J. Geophys. Res. Solid Earth 123, 6397–6410 (2018).

  66. 66.

    Gardner, J. E., Carey, S., Rutherford, M. J. & Sigurdsson, H. Petrologic diversity in Mount St-Helens dacites during the last 4,000 years - implications for magma mixing. Contrib. Mineral. Petrol. 119, 224–238 (1995).

  67. 67.

    Chen, K.-X., Gung, Y., Kuo, B.-Y. & Huang, T.-Y. Crustal magmatism and deformation fabrics in northeast Japan revealed by ambient noise tomography. J. Geophys. Res. Solid Earth 123, 8891–8906 (2018).

  68. 68.

    Townsend, M., Huber, C., Degruyter, W. & Bachmann, O. Magma chamber growth during intercaldera periods: insights from thermo-mechanical modeling with applications to Laguna del Maule, Campi Flegrei, Santorini, and Aso. Geochem. Geophys. Geosyst. 20, 1574–1591 (2019).

  69. 69.

    Huber, C., Bachmann, O. & Manga, M. Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth Planet. Sci. Lett. 283, 38–47 (2009).

  70. 70.

    Zhang, Y. H2O in rhyolitic glasses and melts: measurement, speciation, solubility, and diffusion. Rev. Geophys. 37, 493–516 (1999).

  71. 71.

    Dufek, J. & Bergantz, G. W. Transient two-dimensional dynamics in the upper conduit of a rhyolitic eruption: a comparison of closure models for the granular stress. J. Volcanol. Geotherm. Res. 143, 113–132 (2005).

  72. 72.

    Halbach, H. & Chatterjee, N. D. An empirical Redlich–Kwong equation of state for water to 1000 °C and 200 kbar. Contrib. Mineral. Petrol. 79, 337–345 (1982).

  73. 73.

    Huber, C., Bachmann, O. & Manga, M. Two competing effects of volatiles on heat transfer in crystal-rich magmas: thermal insulation vs defrosting. J. Petrol. 51, 847–867 (2010).

  74. 74.

    White, S. M., Crisp, J. A. & Spera, F. A. Long-term volumetric eruption rates and magma budgets. Geochem. Geophys. Geosyst. 7 (2006).

  75. 75.

    Rubin, A. M. Propagation of magma-filled cracks. Annu Rev. Earth Planet. Sci. 23, 287–336 (1995).

  76. 76.

    Marsh, B. D. On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib. Mineral. Petrol. 78, 85–98 (1981).

  77. 77.

    Lensky, N. G., Lyakhovsky, V. & Navon, O. Radial variations of melt viscosity around growing bubbles and gas overpressure in vesiculating magmas. Earth Planet. Sci. Lett. 186, 1–6 (2001).

Download references

Acknowledgements

The authors would like to thank K.-X. Chen for providing Fig. 3b,c in a format that allowed us to modify the figure. C.H. is funded through an NSF CAREER grant, M.T. is funded through NSF-EAR 1760004 awarded to C.H., and O.B. is funded by the Swiss National Fund 200021_178928. The authors dedicate this paper to the memory of our colleague and friend James Dale Webster.

Author information

C.H. and O.B. conceived the study with valuable inputs from M.T. and W.D. The numerical model was developed by C.H., W.D. and M.T. The analysis of the results was conducted by C.H. and M.T. and the initial draft of the manuscript was written by C.H. with improvements and substantial edits from M.T., W.D. and O.B.

Correspondence to Christian Huber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary model description.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huber, C., Townsend, M., Degruyter, W. et al. Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology. Nat. Geosci. 12, 762–768 (2019) doi:10.1038/s41561-019-0415-6

Download citation