Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology

Abstract

Storage pressures of magma chambers influence the style, frequency and magnitude of volcanic eruptions. Neutral buoyancy or rheological transitions are commonly assumed to control where magmas accumulate and form such chambers. However, the density of volatile-rich silicic magmas is typically lower than that of the surrounding crust, and the rheology of the crust alone does not define the depth of the brittle–ductile transition around a magma chamber. Yet, typical storage pressures inferred from geophysical inversions or petrological methods seem to cluster around 2 ± 0.5 kbar in all tectonic settings and crustal compositions. Here, we use thermomechanical modelling to show that storage pressure is controlled by volatile exsolution and crustal rheology. At pressures \(\lesssim\)1.5 kbar, and for geologically realistic water contents, chamber volumes and recharge rates, the presence of an exsolved magmatic volatile phase hinders chamber growth because eruptive volumes are typically larger than recharges feeding the system during periods of dormancy. At pressures \(>rsim\)2.5 kbar, the viscosity of the crust in long-lived magmatic provinces is sufficiently low to inhibit most eruptions. Sustainable eruptible magma reservoirs are able to develop only within a relatively narrow range of pressures around 2 ± 0.5 kbar, where the amount of exsolved volatiles fosters growth while the high viscosity of the crust promotes the necessary overpressurization for eruption.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: A regime diagram showing the evolution of magma chambers at a pressure of 2 kbar.
Fig. 2: Regime diagrams of eruptible and growing chambers as a function of magma water content, depth, magma recharge rate and initial volume.
Fig. 3: Pressure distribution where melt/active magma reservoir is inferred from petrology or geophysical methods.
Fig. 4: A summary diagram comparing numerical simulations with geophysical and petrological data.

Data availability

The datasets generated during this study (outputs from numerical simulations) are available from the corresponding author on request.

Code availability

The code used to generate the magma chamber growth outputs can be accessed by contacting the corresponding author.

References

  1. Hildreth, W. Gradients in silicic magma chambers: implications for lithospheric magmatism. J. Geophys. Res. 86, 10153–10192 (1981).

    Article  Google Scholar 

  2. Lipman, P. W., Doe, B. & Hedge, C. Petrologic evolution of the San Juan volcanic field, southwestern Colorado: Pb and Sr isotope evidence. Geol. Soc. Am. Bull. 89, 59–82 (1978).

    Article  Google Scholar 

  3. Bachmann, O. & Huber, C. Silicic magma reservoirs in the Earth’s crust. Am. Mineral. 101, 2377–2404 (2016).

    Article  Google Scholar 

  4. Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).

  5. Hildreth, W. S. & Moorbath, S. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 98, 455–499 (1988).

    Article  Google Scholar 

  6. Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Article  Google Scholar 

  7. Marsh, B. D. A magmatic mush column Rosetta Stone: the McMurdo Dry Valleys of Antarctica. EOS Trans. Am. Geophys. Union 85, 497–502 (2004).

    Article  Google Scholar 

  8. Burchardt, S. New insights into the mechanics of sill emplacement provided by field observations of the Njardvik Sill, Northeast Iceland. J. Volcanol. Geotherm. Res. 173, 280–288 (2008).

    Article  Google Scholar 

  9. Menand, T. Physical controls and depth of emplacement of igneous bodies: a review. Tectonophysics 500, 11–19 (2011).

    Article  Google Scholar 

  10. Miller, C. F. et al. Growth of plutons by incremental emplacement of sheets in crystal-rich host: evidence from Miocene intrusions of the Colorado River region, Nevada, USA. Tectonophysics 500, 65–77 (2011).

    Article  Google Scholar 

  11. Karlstrom, L., Paterson, S. R. & Jellinek, A. M. A reverse energy cascade for crustal magma transport. Nat. Geosci. 10, 604–608 (2017).

    Article  Google Scholar 

  12. Lister, J. R. & Kerr, R. C. Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J. Geophys. Res. Solid Earth 96, 10049–10077 (1991).

    Article  Google Scholar 

  13. Walker, G. P. L. Gravitational (density) controls on volcanism, magma chambers and intrusions. Aust. J. Earth Sci. 36, 149–165 (1989).

    Article  Google Scholar 

  14. Gudmundsson, A. Magma chambers: formation, local stresses, excess pressures, and compartments. J. Volcanol. Geotherm. Res. 237–238, 19–41 (2012).

    Article  Google Scholar 

  15. Rivalta, E., Taisne, B., Bunger, A. P. & Katz, R. F. A review of mechanical models of dike propagation: schools of thought, results and future directions. Tectonophysics 638, 1–42 (2015).

    Article  Google Scholar 

  16. Burov, E., Jaupart, C. & Guillou-Frottier, L. Ascent and emplacement of buoyant magma bodies in brittle–ductile upper crust. J. Geophys. Res. 108, 2177 (2003).

    Article  Google Scholar 

  17. Gregg, P. M., de Silva, S. L., Grosfils, E. B. & Parmigiani, J. P. Catastrophic caldera-forming eruptions: thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. J. Volcanol. Geotherm. Res. 241–242, 1–12 (2012).

    Article  Google Scholar 

  18. Lowenstern, J. B., Smith, R. B. & Hill, D. P. Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems. Phil. Trans. R. Soc. A 364, 2055–2072 (2006).

    Article  Google Scholar 

  19. Gettings, M. E. Variation of depth to the brittle–ductile transition due to cooling of a midcrustal intrusion. Geophys. Res. Lett. 15, 213–216 (1988).

    Article  Google Scholar 

  20. Rubin, A. M. Dike ascent in partially molten rock. J. Geophys. Res. Solid Earth 103, 20901–20919 (1998).

    Article  Google Scholar 

  21. Huppert, H. E. & Woods, A. W. The role of volatiles in magma chamber dynamics. Nature 420, 493–495 (2002).

    Article  Google Scholar 

  22. Degruyter, W., Huber, C., Bachmann, O., Cooper, K. M. & Kent, A. J. R. Magma reservoir response to transient recharge events: the case of Santorini volcano (Greece). Geology 44, 23–26 (2016).

    Article  Google Scholar 

  23. Degruyter, W., Huber, C., Bachmann, O., Cooper, K. M. & Kent, A. J. R. Influence of exsolved volatiles on reheating silicic magmas by recharge and consequences for eruptive style at Volcán Quizapu (Chile). Geochem. Geophys. Geosyst. 18, 4123–4135 (2017).

    Article  Google Scholar 

  24. Forni, F., Degruyter, W., Bachmann, O., De Astis, G. & Mollo, S. Long-term magmatic evolution reveals the beginning of a new caldera cycle at Campi Flegrei. Sci. Adv. 4, eaat940 (2018).

  25. Degruyter, W. & Huber, C. A model for eruption frequency of upper crustal silicic magma chambers. Earth Planet. Sci. Lett. 403, 117–130 (2014).

    Article  Google Scholar 

  26. Hansen, F. D. & Carter, N. L. Semibrittle creep of dry and wet westerly granite at 1,000 MPa. In The 24th US Symposium on Rock Mechanics 20 (American Rock Mechanics Association, 1983).

  27. Jellinek, A. M. & DePaolo, D. J. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull. Volcanol. 65, 363–381 (2003).

    Article  Google Scholar 

  28. Karlstrom, L., Dufek, J. & Manga, M. Magma chamber stability in arc and continental crust. J. Volcanol. Geotherm. Res. 190, 249–270 (2010).

    Article  Google Scholar 

  29. Johnson, M. C. & Rutherford, M. J. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley Caldera (California) volcanic rocks. Geology 17, 837–841 (1989).

    Article  Google Scholar 

  30. Putirka, K. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am. Mineral. 101, 841–858 (2016).

    Article  Google Scholar 

  31. Schmidt, M. W. Amphibole composition in tonalite as a function of pressure; an experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 110, 304–310 (1992).

    Article  Google Scholar 

  32. Wallace, P. J., Anderson, A. T. & Davis, A. M. Quantification of pre-eruptive exsolved gas contents in silicic magmas. Nature 377, 612–615 (1995).

    Article  Google Scholar 

  33. Baker, D. R. The fidelity of melt inclusions as records of melt composition. Contrib. Mineral. Petrol. 156, 377–395 (2008).

    Article  Google Scholar 

  34. Blundy, J. D. & Cashman, K. V. Rapid decompression-driven crystallization recorded by melt inclusions from Mount St. Helens volcano. Geology 33, 793–796 (2005).

    Article  Google Scholar 

  35. Lloyd, A. S., Plank, T., Ruprecht, P., Hauri, E. H. & Rose, W. Volatile loss from melt inclusions in pyroclasts of differing sizes. Contrib. Mineral. Petrol. 165, 129–153 (2013).

    Article  Google Scholar 

  36. Wallace, P. in Melt Inclusions in Volcanic Systems: Methods, Applications and Problems Vol. 5 (eds De Vivo, B. & Bodnar, R. J.) 105–127 (Elsevier, 2003).

  37. Bachmann, O., Wallace, P. J. & Bourquin, J. The melt inclusion record from the rhyolitic Kos Plateau Tuff (Aegean Arc). Contrib. Mineral. Petrol. 159, 187–202 (2010).

    Article  Google Scholar 

  38. Lowenstern, J. B. in Melt Inclusions in Volcanic Systems: Methods, Applications and Problems Vol. 5 (eds De Vivo, B. & Bodnar, R. J.) 1–22 (Elsevier, 2003).

  39. Wallace, P. J., Anderson, A. T. & Davis, A. M. Gradients in H2O, CO2, and exsolved gas in a large-volume silicic magma chamber: interpreting the record preserved in the melt inclusions from the Bishop Tuff. J. Geophys. Res. 104, 20097–20122 (1999).

    Article  Google Scholar 

  40. Ague, J. J. Thermodynamic calculation of emplacement pressures for batholithic rocks, California; implications for the aluminum-in-hornblende barometer. Geology 25, 563–566 (1997).

    Article  Google Scholar 

  41. Bachmann, O. & Dungan, M. A. Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. Am. Mineral. 87, 1062–1076 (2002).

    Article  Google Scholar 

  42. Erdmann, S., Martel, C., Pichavant, M. & Kushnir, A. Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contrib. Mineral. Petrol. 167, 1–23 (2014).

    Article  Google Scholar 

  43. Bedrosian, P. A., Peacock, J. R., Bowles-Martinez, E., Schultz, A. & Hill, G. J. Crustal inheritance and a top-down control on arc magmatism at Mount St Helens. Nat. Geosci. 11, 865–870 (2018).

    Article  Google Scholar 

  44. Hata, M., Takakura, S., Matsushima, N., Hashimoto, T. & Utsugi, M. Crustal magma pathway beneath Aso caldera inferred from three-dimensional electrical resistivity structure. Geophys. Res. Lett. 43, 10,720–10,727 (2016).

    Article  Google Scholar 

  45. Miller, C. A., Le Mével, H., Currenti, G., Williams-Jones, G. & Tikoff, B. Microgravity changes at the Laguna del Maule volcanic field: magma-induced stress changes facilitate mass addition. J. Geophys. Res. Solid Earth 122, 3179–3196 (2017).

    Article  Google Scholar 

  46. Chaussard, E. & Amelung, F. Regional controls on magma ascent and storage in volcanic arcs. Geochem. Geophys. Geosyst. 15, 1407–1418 (2014).

    Article  Google Scholar 

  47. Hurwitz, S., Kipp, K. L., Ingebritsen, S. E. & Reid, M. E. Groundwater flow, heat transport, and water table position within volcanic edifices: implications for volcanic processes in the Cascade Range. J. Geophys. Res. Solid Earth 108, 2557 (2003).

    Article  Google Scholar 

  48. Holtz, F., Sato, H., Lewis, J. F., Behrens, H. & Nakada, S. Experimental petrology of the 1991–1995 Unzen Dacite, Japan. Part I: phase relations, phase composition and pre-eruptive conditions. J. Petrol. 46, 319–337 (2005).

    Article  Google Scholar 

  49. Rutherford, M. J., Sigurdsson, H., Carey, S. & Davis, A. M. The May 18, 1980, eruption of Mount St. Helens, 1. Melt composition and experimental phase equilibria. J. Geophys. Res. 90, 2929–2947 (1985).

    Article  Google Scholar 

  50. Scaillet, B., Holtz, F. & Pichavant, M. Experimental constraints on the formation of silicic magmas. Elements 12, 109–114 (2016).

    Article  Google Scholar 

  51. Johnson, M. & Rutherford, M. Experimentally determined conditions in the Fish Canyon Tuff, Colorado, magma chamber. J. Petrol. 30, 711–737 (1989).

    Article  Google Scholar 

  52. Scaillet, B. & Evans, B. W. The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P–TfO2fH2O conditions of the dacite magma. J. Petrol. 40, 381–411 (1999).

    Article  Google Scholar 

  53. Kiser, E., Levander, A., Zelt, C., Schmandt, B. & Hansen, S. M. Focusing of melt near the top of the Mount St. Helens (USA) magma reservoir and its relationship to major volcanic eruptions. Geology 46, 775–778 (2018).

    Article  Google Scholar 

  54. Huang, H.-H. et al. The Yellowstone magmatic system from the mantle plume to the upper crust. Science 348, 773–776 (2015).

    Article  Google Scholar 

  55. Huang, Y.-C., Ohkura, T., Kagiyama, T., Yoshikawa, S. & Inoue, H. Shallow volcanic reservoirs and pathways beneath Aso caldera revealed using ambient seismic noise tomography. Earth Planets Space 70, 169 (2018).

    Article  Google Scholar 

  56. Masturyono, McCaffrey, R., Wark, D. A. & Roecker, S. W. Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained by three-dimensional P wave velocities, seismicity, and gravity data. Geochem. Geophys. Geosyst. 2, 2000GC000096 (2001).

    Article  Google Scholar 

  57. Fedi, M. et al. Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy. Sci. Rep. 8, 8229 (2018).

    Article  Google Scholar 

  58. Andersen, N. L. et al. Pleistocene to Holocene growth of a large upper crustal rhyolitic magma reservoir beneath the active Laguna del Maule volcanic field, central Chile. J. Petrol. 58, 85–114 (2017).

    Article  Google Scholar 

  59. Gualda, G. A. R. & Ghiorso, M. S. Low-pressure origin of high-silica rhyolites and granites. J. Geol. 121, 537–545 (2013).

    Article  Google Scholar 

  60. Liu, Y., Zhang, Y. & Behrens, H. Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O–CO2 solubility in rhyolitic melts. J. Volcanol. Geotherm. Res. 143, 219–235 (2005).

    Article  Google Scholar 

  61. Wallace, P. J. & Gerlach, T. M. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: evidence from Mount Pinatubo. Science 265, 497–499 (1994).

    Article  Google Scholar 

  62. Chesner, C. A. & Luhr, J. F. A melt inclusion study of the Toba Tuffs, Sumatra, Indonesia. J. Volcanol. Geotherm. Res. 197, 259–278 (2010).

    Article  Google Scholar 

  63. Lowenstern, J. B., Bacon, C. R., Calk, L. C., Hervig, R. L. & Aines, R. D. Major-Element, Trace-Element, and Volatile Concentrations in Silicate Melt Inclusions from the Tuff of Pine Grove, Wah Wah Mountains, Utah Open-File Report 94-242 (US Geological Survey, 1994).

  64. Agostinetti, N. P. & Chiarabba, C. Seismic structure beneath Mt Vesuvius from receiver function analysis and local earthquakes tomography: evidences for location and geometry of the magma chamber. Geophys. J. Int. 175, 1298–1308 (2008).

    Article  Google Scholar 

  65. Hata, M. et al. Three-dimensional electrical resistivity distribution beneath the Beppu–Shimabara graben with a focus on Aso caldera, Southwest Japan subduction zone. J. Geophys. Res. Solid Earth 123, 6397–6410 (2018).

    Google Scholar 

  66. Gardner, J. E., Carey, S., Rutherford, M. J. & Sigurdsson, H. Petrologic diversity in Mount St-Helens dacites during the last 4,000 years - implications for magma mixing. Contrib. Mineral. Petrol. 119, 224–238 (1995).

    Article  Google Scholar 

  67. Chen, K.-X., Gung, Y., Kuo, B.-Y. & Huang, T.-Y. Crustal magmatism and deformation fabrics in northeast Japan revealed by ambient noise tomography. J. Geophys. Res. Solid Earth 123, 8891–8906 (2018).

    Article  Google Scholar 

  68. Townsend, M., Huber, C., Degruyter, W. & Bachmann, O. Magma chamber growth during intercaldera periods: insights from thermo-mechanical modeling with applications to Laguna del Maule, Campi Flegrei, Santorini, and Aso. Geochem. Geophys. Geosyst. 20, 1574–1591 (2019).

    Article  Google Scholar 

  69. Huber, C., Bachmann, O. & Manga, M. Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth Planet. Sci. Lett. 283, 38–47 (2009).

    Article  Google Scholar 

  70. Zhang, Y. H2O in rhyolitic glasses and melts: measurement, speciation, solubility, and diffusion. Rev. Geophys. 37, 493–516 (1999).

    Article  Google Scholar 

  71. Dufek, J. & Bergantz, G. W. Transient two-dimensional dynamics in the upper conduit of a rhyolitic eruption: a comparison of closure models for the granular stress. J. Volcanol. Geotherm. Res. 143, 113–132 (2005).

    Article  Google Scholar 

  72. Halbach, H. & Chatterjee, N. D. An empirical Redlich–Kwong equation of state for water to 1000 °C and 200 kbar. Contrib. Mineral. Petrol. 79, 337–345 (1982).

    Article  Google Scholar 

  73. Huber, C., Bachmann, O. & Manga, M. Two competing effects of volatiles on heat transfer in crystal-rich magmas: thermal insulation vs defrosting. J. Petrol. 51, 847–867 (2010).

    Article  Google Scholar 

  74. White, S. M., Crisp, J. A. & Spera, F. A. Long-term volumetric eruption rates and magma budgets. Geochem. Geophys. Geosyst. 7 (2006).

  75. Rubin, A. M. Propagation of magma-filled cracks. Annu Rev. Earth Planet. Sci. 23, 287–336 (1995).

    Article  Google Scholar 

  76. Marsh, B. D. On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib. Mineral. Petrol. 78, 85–98 (1981).

    Article  Google Scholar 

  77. Lensky, N. G., Lyakhovsky, V. & Navon, O. Radial variations of melt viscosity around growing bubbles and gas overpressure in vesiculating magmas. Earth Planet. Sci. Lett. 186, 1–6 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K.-X. Chen for providing Fig. 3b,c in a format that allowed us to modify the figure. C.H. is funded through an NSF CAREER grant, M.T. is funded through NSF-EAR 1760004 awarded to C.H., and O.B. is funded by the Swiss National Fund 200021_178928. The authors dedicate this paper to the memory of our colleague and friend James Dale Webster.

Author information

Authors and Affiliations

Authors

Contributions

C.H. and O.B. conceived the study with valuable inputs from M.T. and W.D. The numerical model was developed by C.H., W.D. and M.T. The analysis of the results was conducted by C.H. and M.T. and the initial draft of the manuscript was written by C.H. with improvements and substantial edits from M.T., W.D. and O.B.

Corresponding author

Correspondence to Christian Huber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary model description.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huber, C., Townsend, M., Degruyter, W. et al. Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology. Nat. Geosci. 12, 762–768 (2019). https://doi.org/10.1038/s41561-019-0415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0415-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing