An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes


Modern oceanic crust is constantly produced at oceanic ridges and recycled back into the mantle at subduction zones via plate tectonics. An outstanding question in geology is whether the Earth started in a non-plate tectonic regime, and if it did, when the transition to the modern regime occurred. This is a complicated question to address because Archaean rocks lack modern equivalents to anchor interpretations. Here, we present a silicon isotopic study of 4.0–2.8-Gyr-old tonalite–trondhjemite–granodiorites, as well as Palaeozoic granites and modern adakites. We show that Archaean granitoids have heavier silicon isotopic compositions than granites and adakites, regardless of melting pressure. This is best explained if Archaean granitoids were formed by melting of subducted basaltic crust enriched in sedimentary silica through interaction with seawater. Before the appearance of silica-forming organisms 0.5–0.6 billion years ago, the oceans were close to silicon saturation, which led to extensive precipitation of cherts on the seafloor. This is in contrast to modern oceans, where silica biomineralization maintains dissolved silicon at low concentration. The unique heavy silicon isotope signature of cherts has been transferred to Archaean granitoids during an oceanic subduction process, which was probably responsible for the formation of felsic rocks on Archaean emerged lands.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Pressure–temperature diagram and Si isotopic results.
Fig. 2: Trace-element and Si isotopic compositions.
Fig. 3: Combining O and Si isotopes to trace hydrothermal or sedimentary addition.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files (that is, the Supplementary Information and additional datasets).


  1. 1.

    Martin, H. Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46, 411–429 (1999).

    Article  Google Scholar 

  2. 2.

    Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. 183, 73–90 (2010).

    Article  Google Scholar 

  3. 3.

    Martin, H. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14, 753–756 (1986).

    Article  Google Scholar 

  4. 4.

    Foley, S. F., Buhre, S. & Jacob, D. E. Evolution of the Archean crust by delamination and shallow subduction. Nature 421, 249–252 (2003).

    Article  Google Scholar 

  5. 5.

    Hopkins, M., Harrison, T. M. & Manning, C. E. Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456, 493–496 (2008).

    Article  Google Scholar 

  6. 6.

    Zegers, T. E. & van Keken, P. E. Middle Archean continent formation by crustal delamination. Geology 29, 1083–1086 (2001).

    Article  Google Scholar 

  7. 7.

    Johnson, T. E. et al. Earth’s first stable continents did not form by subduction. Nature 543, 239–242 (2017).

    Article  Google Scholar 

  8. 8.

    Moyen, J.-F. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123, 21–36 (2011).

    Article  Google Scholar 

  9. 9.

    Guitreau, M., Blichert-Toft, J., Martin, H., Mojzsis, S. J. & Albarède, F. Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust. Earth Planet. Sci. Lett. 337, 211–223 (2012).

    Article  Google Scholar 

  10. 10.

    Palin, R. M., White, R. W. & Green, E. C. R. Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: constraints from phase equilibrium modelling. Precambrian Res. 287, 73–90 (2016).

    Article  Google Scholar 

  11. 11.

    Trail, D. et al. Origin and significance of Si and O isotope heterogeneities in Phanerozoic, Archean, and Hadean zircon. Proc. Natl Acad. Sci. USA 115, 10287–10292 (2018).

    Article  Google Scholar 

  12. 12.

    Savage, P. S. et al. The silicon isotope composition of granites. Geochim. Cosmochim. Acta 92, 184–202 (2012).

    Article  Google Scholar 

  13. 13.

    Arndt, N. et al. Were komatiites wet? Geology 26, 739–742 (1998).

    Article  Google Scholar 

  14. 14.

    André, L., Abraham, K., Foley, S. F. & Hofmann, A. Heavy δ30Si in Archean granitoids as evidence for supracrustal components in their sources. Goldschmidt 2018 abstr. 64 (2018);

  15. 15.

    Méheut, M. & Schauble, E. A. Silicon isotope fractionation in silicate minerals: insights from first-principles models of phyllosilicates, albite and pyrope. Geochim. Cosmochim. Acta 134, 137–154 (2014).

    Article  Google Scholar 

  16. 16.

    Qin, T., Wu, F., Wu, Z. & Huang, F. First-principles calculations of equilibrium fractionation of O and Si isotopes in quartz, albite, anorthite, and zircon. Contrib. Mineral. Petrol. 171, 91 (2016).

    Article  Google Scholar 

  17. 17.

    Poitrasson, F. & Zambardi, T. An Earth−Moon silicon isotope model to track silicic magma origins. Geochim. Cosmochim. Acta 167, 301–312 (2015).

    Article  Google Scholar 

  18. 18.

    Eiler, J. M. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev. Mineral. Geochem. 43, 319–364 (2001).

    Article  Google Scholar 

  19. 19.

    Savage, P. S. et al. Silicon isotope homogeneity in the mantle. Earth Planet. Sci. Lett. 295, 139–146 (2010).

    Article  Google Scholar 

  20. 20.

    Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F. & Reynolds, B. C. Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth Planet. Sci. Lett. 287, 77–85 (2009).

    Article  Google Scholar 

  21. 21.

    Zambardi, T. et al. Silicon isotope variations in the inner Solar System: implications for planetary formation, differentiation and composition. Geochim. Cosmochim. Acta 121, 67–83 (2013).

    Article  Google Scholar 

  22. 22.

    Pringle, E. A. et al. Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of oceanic island basalts. Geochim. Cosmochim. Acta 189, 282–295 (2016).

    Article  Google Scholar 

  23. 23.

    Savage, P. S. et al. Silicon isotope fractionation during magmatic differentiation. Geochim. Cosmochim. Acta 75, 6124–6139 (2011).

    Article  Google Scholar 

  24. 24.

    Rapp, R. P., Watson, E. B. & Miller, C. F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res. 51, 1–25 (1991).

    Article  Google Scholar 

  25. 25.

    McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  26. 26.

    Defant, M. J. & Drummond, M. S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–665 (1990).

    Article  Google Scholar 

  27. 27.

    Stern, C. R. & Kilian, R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol. 123, 263–281 (1996).

    Article  Google Scholar 

  28. 28.

    Bindeman, I. N. et al. Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet. Sci. Lett. 235, 480–496 (2005).

    Article  Google Scholar 

  29. 29.

    King, E. M., Valley, J. W., Davis, D. W. & Edwards, G. R. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: indicator of magma source. Precambrian Res. 92, 365–387 (1998).

    Article  Google Scholar 

  30. 30.

    King, E. M., Valley, J. W. & Davis, D. W. Oxygen isotope evolution of volcanic rocks at the Sturgeon Lake volcanic complex, Ontario. Can. J. Earth Sci. 37, 39–50 (2000).

    Article  Google Scholar 

  31. 31.

    Robert, F. & Chaussidon, M. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443, 969–972 (2006).

    Article  Google Scholar 

  32. 32.

    Marin-Carbonne, J., Robert, F. & Chaussidon, M. The silicon and oxygen isotope compositions of Precambrian cherts: a record of oceanic paleo-temperatures? Precambrian Res. 247, 223–234 (2014).

    Article  Google Scholar 

  33. 33.

    Siever, R. The silica cycle in the Precambrian. Geochim. Cosmochim. Acta 56, 3265–3272 (1992).

    Article  Google Scholar 

  34. 34.

    Knauth, L. P. Petrogenesis of chert. Rev. Mineral. Geochem. 29, 233–258 (1994).

    Google Scholar 

  35. 35.

    Ding, T. P. et al. Silicon Isotope Geochemistry (Geological Publishing House, 1996).

  36. 36.

    Knauth, L. P. & Epstein, S. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim. Cosmochim. Acta 40, 1095–1108 (1976).

    Article  Google Scholar 

  37. 37.

    Yu, H. M., Li, Y. H., Gao, Y. J., Huang, J. & Huang, F. Silicon isotopic compositions of altered oceanic crust: Implications for Si isotope heterogeneity in the mantle. Chem. Geol. 479, 1–9 (2018).

    Article  Google Scholar 

  38. 38.

    Muehlenbachs, K. & Clayton, R. N. Oxygen isotope composition of the oceanic crust and its bearing on seawater. J. Geophys. Res. 81, 4365–4369 (1976).

    Article  Google Scholar 

  39. 39.

    Gregory, R. T. & Taylor, H. P. Jr An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J. Geophys. Res. Solid Earth 86, 2737–2755 (1981).

    Article  Google Scholar 

  40. 40.

    Schairer, J. F. & Yoder, H. S. Jr The nature of residual liquids from crystallization, with data on the system nepheline–diopside–silica. Am. J. Sci. A 258, 273–283 (1960).

    Google Scholar 

  41. 41.

    Telus, M. et al. Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: The tale from migmatites, granitoids, and pegmatites. Geochim. Cosmochim. Acta 97, 247–265 (2012).

    Article  Google Scholar 

  42. 42.

    Kleine, B. I. et al. Silicon and oxygen isotopes unravel quartz formation processes in the Icelandic crust. Geochem. Perspect. Lett. 7, 5–11 (2018).

    Article  Google Scholar 

  43. 43.

    Pringle, E. A., Moynier, F., Savage, P. S., Badro, J. & Barrat, J. A. Silicon isotopes in angrites and volatile loss in planetesimals. Proc. Natl Acad. Sci USA. 111, 17029–17032 (2014).

    Article  Google Scholar 

  44. 44.

    Georg, R. B., Reynolds, B. C., Frank, M. & Halliday, A. N. New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chem. Geol. 235, 95–104 (2006).

    Article  Google Scholar 

  45. 45.

    Clayton, R. N. & Mayeda, T. K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 27, 43–52 (1963).

    Article  Google Scholar 

Download references


We thank P. Louvat, T. Sontag and P. Burckel for help with the (multi-collector) inductively coupled plasma mass spectrometry. We thank G. Libourel for suggestions. I. Bindeman, M. Krawczynski, F. Poitrasson, E. J. Chin and M. Harrison are appreciated for their comments on an earlier version of this manuscript. I.S.P.’s komatiite sample collection benefited from contributions of E. Nisbet, G. Byerly and C. Anhaeusser. We thank O. Sigmarsson for providing adakite samples. F.M. acknowledges funding from the ERC under the H2020 framework programme/ERC grant agreement no. 637503 (Pristine). F.M. and M.C. thank the financial support of the UnivEarthS Labex programme at Sorbonne Paris Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). Parts of this work were supported by IPGP platform PARI, and by Region Île-de-France Sesame grant no. 12015908. M.G. acknowledges financial support from Région Auvergne (Auvergne Fellowship programme), LabEx ClerVolc (ANR-10-LABX-0006) and Agence National de la Recherche (ANR-17-CE31-0021 Zircontinents). This is ClerVolc contribution 353.

Author information




Z.D., M.C., M.G. and F.M. designed the research project. M.G., I.S.P. and N.D. selected the TTGs/adakites, komatiites and granites, respectively, for study. Z.D. performed the research and analysed the data. Z.D., M.C., M.G., I.S.P., N.D. and F.M. contributed to interpreting the data and writing the paper.

Corresponding author

Correspondence to Zhengbin Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information on samples and calculations and additional figures (Supplementary Figs. 1–5).

Dataset 1

Chemical and silicon isotopic compositions.

Dataset 2

Silicon isotopic data for terrestrial samples in literature.

Dataset 3

Primitive mantle normalized values for TTGs.

Dataset 4

Experimental data.

Dataset 5

Modelling silicon isotopic fractionations between minerals and melts.

Dataset 6

Modelling strontium and silicon of felsic melts.

Dataset 7

Summary of bulk oxygen isotopic data for Archaean TTGs.

Dataset 8

Whole-rock oxygen isotopic data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Chaussidon, M., Guitreau, M. et al. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes. Nat. Geosci. 12, 774–778 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing