Opposite tropical circulation trends in climate models and in reanalyses

Abstract

The Hadley circulation has large climate impacts at low latitudes by transferring heat and moisture between the tropics and subtropics. Climate projections show a robust weakening of the Northern Hemisphere Hadley circulation by the end of the twenty-first century. Over the past several decades, however, atmospheric reanalyses indicate a strengthening of the Hadley circulation. Here we show that the strengthening of the circulation in the Northern Hemisphere is not seen in climate models; instead, these models simulate a weakening of the circulation in the past 40 years. Using observations and a large ensemble of model simulations we elucidate this discrepancy between climate models and reanalyses, and show that it does not stem from internal climate variability or biases in climate models, but appears related to artefacts in the representation of latent heating in the reanalyses. Our results highlight the role of anthropogenic emissions in the recent slowdown of the atmospheric circulation, which is projected to continue in coming decades, and question the reliability of reanalyses for estimating trends in the Hadley circulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The 39-year (1979–2017) trends (108 kg s−1 yr−1) and time series (1010 kg s−1) of Ψmax.
Fig. 2: The 39-year (1979–2017) trends (108 kg s−1 yr−1) of the Northern Hemisphere HC strength calculated from the KE equation \({\varPsi} _{\max}^{\mathrm{KE}}\).
Fig. 3: The 32-year (1979–2010) Qlatent (W m−2 yr−1) and precipitation (10−2 mm d−1 yr−1) trends.

Data availability

The data used in the manuscript are publicly available for CMIP5 data (https://esgf-node.llnl.gov/projects/cmip5/), LE (http://www.cesm.ucar.edu/), ERA-I (https://www.ecmwf.int), NCEP2 (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html), JRA55, MERRA-2 and CFSR2 (https://rda.ucar.edu/ and https://esgf.nccs.nasa.gov/projects/create-ip/) and GPCP (https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html).

Code availability

The code for calculating the KE equation is available upon request from rc3101@columbia.edu.

References

  1. 1.

    Vallis, G. K. Atmospheric and Oceanic Fluid Dynamics (Cambridge Univ. Press, 2006).

  2. 2.

    Hartmann, D. L. Global Physical Climatology 2nd edn (Academic, 2016).

  3. 3.

    Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article  Google Scholar 

  4. 4.

    Kang, S. M., Deser, C. & Polvani, L. M. Uncertainty in climate change projections of the Hadley circulation: the role of internal variability. J. Clim. 26, 7541–7554 (2013).

    Article  Google Scholar 

  5. 5.

    Vallis, G. K., Zurita-Gotor, P., Cairns, C. & Kidston, J. Response of the large-scale structure of the atmosphere to global warming. Q. J. R. Meteorol. Soc. 141, 1479–1501 (2015).

    Article  Google Scholar 

  6. 6.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  7. 7.

    Knutson, T. R. & Manabe, S. Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Clim. 8, 2181–2199 (1995).

    Article  Google Scholar 

  8. 8.

    Bony, S. et al. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci. 6, 447–451 (2013).

    Article  Google Scholar 

  9. 9.

    Merlis, T. M. Direct weakening of tropical circulations from masked CO2 radiative forcing. Proc. Natl Acad. Sci. USA 112, 13167–13171 (2015).

    Article  Google Scholar 

  10. 10.

    Gastineau, G., Le Treut, H. & Li, L. Hadley circulation changes under global warming conditions indicated by coupled climate models. Tellus 60, 863–884 (2008).

    Article  Google Scholar 

  11. 11.

    Gastineau, G., Li, L. & Le Treut, H. The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J. Clim. 22, 3993–4013 (2009).

    Article  Google Scholar 

  12. 12.

    Ma, J., Xie, S.-P. & Kosaka, Y. Mechanisms for tropical tropospheric circulation change in response to global warming. J. Clim. 25, 2979–2994 (2012).

    Article  Google Scholar 

  13. 13.

    Seo, K.-H., Frierson, D. M. W. & Son, J.-H. A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys. Res. Lett. 41, 5251–5258 (2014).

    Article  Google Scholar 

  14. 14.

    Schneider, T., O’Gorman, P. A. & Levine, X. J. Water vapor and the dynamics of climate change. Rev. Geophys. 48, RG3001 (2010).

    Article  Google Scholar 

  15. 15.

    Levine, X. J. & Schneider, T. Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J. Atmos. Sci. 68, 769–783 (2011).

    Article  Google Scholar 

  16. 16.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  17. 17.

    Quan, X. W., Diaz, H. F. & Hoerling, M. P. in The Hadley Circulation: Past, Present and Future (eds Diaz, H. F. & Bradley, R. S.) 85–120 (Kluwer Academic, 2004).

  18. 18.

    Mitas, C. M. & Clement, A. Has the Hadley cell been strengthening in recent decades? Geophys. Res. Lett. 32, L03809 (2005).

    Article  Google Scholar 

  19. 19.

    Mitas, C. M. & Clement, A. Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalyses. Geophys. Res. Lett. 33, L01810 (2006).

    Article  Google Scholar 

  20. 20.

    Song, H. & Zhang, M. Changes of the boreal winter Hadley circulation in the NCEP–NCAR and ECMWF reanalyses: a comparative study. J. Clim. 20, 5191–5200 (2007).

    Article  Google Scholar 

  21. 21.

    Stachnik, J. P. & Schumacher, C. A comparison of the Hadley circulation in modern reanalyses. J. Geophys. Res. 116, D22102 (2011).

    Article  Google Scholar 

  22. 22.

    Liu, J., Song, M., Hu, Y. & Ren, X. Changes in the strength and width of the Hadley circulation since 1871. Climate 8, 1169–1175 (2012).

    Google Scholar 

  23. 23.

    Nguyen, H., Evans, A., Lucas, C., Smith, I. & Timbal, B. The Hadley circulation in reanalyses: climatology, variability, and change. J. Clim. 26, 3357–3376 (2013).

    Article  Google Scholar 

  24. 24.

    D’Agostino, R. & Lionello, P. Evidence of global warming impact on the evolution of the Hadley circulation in ECMWF centennial reanalyses. Clim. Dyn. 48, 3047–3060 (2017).

    Article  Google Scholar 

  25. 25.

    Grise, K. M. et al. Recent tropical expansion: natural variability or forced response? J. Clim. 32, 1551–1571 (2019).

    Article  Google Scholar 

  26. 26.

    Kay, J. E. et al. The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Article  Google Scholar 

  27. 27.

    Kuo, H.-L. Forced and free meridional circulations in the atmosphere. J. Atmos. Sci. 13, 561–568 (1956).

    Google Scholar 

  28. 28.

    Peixoto, J. P. & Oort, A. H. Physics of Climate (American Institute of Physics, 1992).

  29. 29.

    Sohn, B.-J., Lee, S., Chung, E.-S. & Song, H.-J. The role of the dry static stability for the recent change in the Pacific Walker circulation. J. Clim. 29, 2765–2779 (2016).

    Article  Google Scholar 

  30. 30.

    Krishnan, R. et al. Will the South Asian monsoon overturning circulation stabilize any further? Clim. Dyn. 40, 187–211 (2013).

    Article  Google Scholar 

  31. 31.

    Chemke, R. & Polvani, L. M. Exploiting the abrupt 4 × CO2 scenario to elucidate tropical expansion mechanisms. J. Clim. 32, 859–875 (2019).

    Article  Google Scholar 

  32. 32.

    Davis, N. A. & Davis, S. M. Reconciling Hadley cell expansion trend estimates in reanalyses. Geophys. Res. Lett. 45, 11,439–11,446 (2018).

    Article  Google Scholar 

  33. 33.

    IPCC Climate Change 2013: The Physical Basis (eds Stocker, T. F. et al.) 1–29 (Cambridge Univ. Press, 2013).

  34. 34.

    Deser, C., Guo, R. & Lehner, F. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus. Geophys. Res. Lett. 44, 7945–7954 (2017).

    Article  Google Scholar 

  35. 35.

    Kosaka, Y. & Xie, S. P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  Google Scholar 

  36. 36.

    Sooraj, K. P., Terray, P. & Mujumdar, M. Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim. Dyn. 45, 233–252 (2015).

    Article  Google Scholar 

  37. 37.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  38. 38.

    Kanamitsu, M. et al. NCEP–DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1643 (2002).

    Article  Google Scholar 

  39. 39.

    Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn 93, 5–48 (2015).

    Article  Google Scholar 

  40. 40.

    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article  Google Scholar 

  41. 41.

    Saha, S. et al. The NCEP climate forecast system version 2. J. Clim. 27, 2185–2208 (2014).

    Article  Google Scholar 

  42. 42.

    Kim, H.-K. & Lee, S. Hadley cell dynamics in a primitive equation model. Part I: axisymmetric flow. J. Atmos. Sci. 58, 2845–2858 (2001).

    Article  Google Scholar 

  43. 43.

    Adler, R. F. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor 4, 1147–1167 (2003).

    Article  Google Scholar 

  44. 44.

    Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative. Res. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

Supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, which is administered by UCAR’s Cooperative Programs for the Advancement of Earth System Science (CPAESS). L.M.P. is grateful for the continued support of the US Natural Science Foundation.

Author information

Affiliations

Authors

Contributions

R.C. downloaded and analysed the data and, together with L.M.P., discussed and wrote the paper.

Corresponding author

Correspondence to Rei Chemke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table and Figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chemke, R., Polvani, L.M. Opposite tropical circulation trends in climate models and in reanalyses. Nat. Geosci. 12, 528–532 (2019). https://doi.org/10.1038/s41561-019-0383-x

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing