Article | Published:

Periodic changes in the Cretaceous ocean and climate caused by marine redox see-saw

Abstract

Periodic changes in sediment composition are usually ascribed to insolation forcing controlled by Earth’s orbital parameters. During the Cretaceous Thermal Maximum at 97–91 Myr ago (Ma), a 37–50-kyr-long cycle that is generally believed to reflect obliquity forcing dominates the sediment record. Here, we use a numerical ocean model to show that a cycle of this length can be generated by marine biogeochemical processes without applying orbital forcing. According to our model, the restricted proto-North Atlantic and Tethys basins were poorly ventilated and oscillated between iron-rich and sulfidic (euxinic) states. The Panthalassa Basin was fertilized by dissolved iron originating from the proto-North Atlantic. Hence, it was less oxygenated while the proto-North Atlantic was in an iron-rich state and better oxygenated during euxinic periods in the proto-North Atlantic. This redox see-saw was strong enough to create significant changes in atmospheric \(p_{\mathrm {CO}_2}\). We conclude that most of the variability in the mid-Cretaceous ocean–atmosphere system can be ascribed to the internal redox see-saw and its response to external orbital forcing.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The authors declare that the data supporting the findings of this study are available within the Article and its Supplementary Information.

Code availability

The UVic model and the REDBIO box model (written in MATHEMATICA) are available from S.F. (sfloegel@geomar.de) and K.W., respectively.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Friedrich, O., Norris, R. D. & Erbacher, J. Evolution of middle to Late Cretaceous oceans—a 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40, 107–110 (2012).

  2. 2.

    O’Brien, C. L. et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth Sci. Rev. 172, 224–247 (2017).

  3. 3.

    Meyers, S. R., Sageman, B. B. & Arthur, M. A. Obliquity forcing of organic matter accumulation during Oceanic Anoxic Event 2. Paleoceanography 27, PA3212 (2012).

  4. 4.

    Kolonic, S. et al. Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: climate coupling and global organic carbon burial. Paleoceanography 20, PA1006 (2005).

  5. 5.

    Kuhnt, W., Luderer, F., Nederbragt, S., Thurow, J. & Wagner, T. Orbital-scale record of the late Cenomanian–Turonian oceanic anoxic event (OAE-2) in the Tarfaya Basin (Morocco). Int. J. Earth. Sci. 94, 147–159 (2005).

  6. 6.

    Kuhnt, W. et al. Unraveling the onset of Cretaceous Oceanic Anoxic Event 2 in an extended sediment archive from the Tarfaya-Laayoune Basin, Morocco. Paleoceanography 32, 923–946 (2017).

  7. 7.

    Sageman, B. B., Rich, J., Arthur, M. A., Birchfield, G. E. & Dean, W. E. Evidence for Milankovitch periodicities in Cenomanian–Turonian lithologic and geochemical cycles, western interior USA. J. Sediment. Res. 67, 286–302 (1997).

  8. 8.

    Eldrett, J. S. et al. Origin of limestone-marlstone cycles: astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous Western Interior Seaway, USA. Earth Planet. Sci. Lett. 423, 98–113 (2015).

  9. 9.

    Bosmans, J. H. C., Hilgen, F. J., Tuenter, E. & Lourens, L. J. Obliquity forcing of low-latitude climate. Clim. Past 11, 1335–1346 (2015).

  10. 10.

    Kuhnt, W., Nederbragt, A. & Leine, L. Cyclicity of Cenomanian-Turonian organic-carbon-rich sediments in the Tarfaya Atlantic Coastal Basin (Morocco). Cretaceous Res. 18, 587–601 (1997).

  11. 11.

    Wagner, T., Hofmann, P. & Flögel, S. Marine black shale deposition and Hadley Cell dynamics: a conceptual framework for the Cretaceous Atlantic Ocean. Mar. Petrol. Geol. 43, 222–238 (2013).

  12. 12.

    Poulton, S. W. et al. A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2. Geology 43, 963–966 (2015).

  13. 13.

    Flögel, S., Wallmann, K. & Kuhnt, W. Cool episodes in the Cretaceous—exploring the effects of physical forcings on Antarctic snow accumulation. Earth Planet. Sci. Lett. 307, 279–288 (2011).

  14. 14.

    Laurin, J., Meyers, S. R., Ulicny, D., Jarvis, I. & Sageman, B. B. Axial obliquity control on the greenhouse carbon budget through middle- to high-latitude reservoirs. Paleoceanography 30, 133–149 (2015).

  15. 15.

    Bohlen, L., Dale, A. & Wallmann, K. Simple transfer functions for calculating benthic fixed nitrogen losses and C:N:P regeneration ratios in global biogeochemical models. Glob. Biogeochem. Cycles 26, GB3029 (2012).

  16. 16.

    Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677–692 (1994).

  17. 17.

    Wallmann, K. Phosphorus imbalance in the global ocean? Glob. Biogeochem. Cycles 24, GB4030 (2010).

  18. 18.

    Dale, A. W. et al. A revised global estimate of dissolved iron fluxes from marine sediments. Glob. Biogeochem. Cycles 29, 691–707 (2015).

  19. 19.

    Raiswell, R. & Canfield, D. E. The iron biogeochemical cycle past and present. Geochem. Perspect. 1, 1–220 (2012).

  20. 20.

    Scholz, F., McManus, J., Mix, A. C., Hensen, C. & Schneider, R. R. The impact of ocean deoxygenation on iron release from continental margin sediments. Nat. Geosci. 7, 433–437 (2014).

  21. 21.

    Monteiro, F. M., Pancost, R. D., Ridgwell, A. & Donnadieu, Y. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): model-data comparison. Paleoceanography 27, PA4209 (2012).

  22. 22.

    Ruvalcaba Baroni, I., Topper, R. P. M., van Helmond, N., Brinkhuis, H. & Slomp, C. P. Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input. Biogeosciences 11, 977–993 (2014).

  23. 23.

    Beil, S. et al. New insights into Cenomanian paleoceanography and climate evolution from the Tarfaya Basin, southern Morocco. Cretaceous Res. 84, 451–473 (2018).

  24. 24.

    Ruttenberg, K. C. Reassessment of the oceanic residence time of phosphorus. Chem. Geol. 107, 405–409 (1993).

  25. 25.

    Flögel, S. et al. Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian Anoxic Event (OAE2). Earth Planet. Sci. Lett. 305, 371–384 (2011).

  26. 26.

    Meyer, K. M. & Kump, L. R. Oceanic euxinia in Earth history: causes and consequences. Annu. Rev. Earth Planet. Sci. 36, 251–288 (2008).

  27. 27.

    Kuypers, M. M. M., van Breugel, Y., Schouten, S., Erba, E. & Damste, J. S. S. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology 32, 853–856 (2004).

  28. 28.

    Lenton, T. M. & Daines, S. J. The effects of marine eukaryote evolution on phosphorus, carbon and oxygen cycling across the Proterozoic–Phanerozoic transition. Emerg. Topics Life Sci. 2, 267–278 (2018).

  29. 29.

    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

  30. 30.

    März, C. et al. Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochim. Cosmochim. Acta 72, 3703–3717 (2008).

  31. 31.

    Clarkson, M. O. et al. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nat. Commun. 7, 12236 (2016).

  32. 32.

    Dickson, A. J. et al. The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29, 471–488 (2014).

  33. 33.

    Lenton, T. M. & Daines, S. J. Biogeochemical transformations in the history of the ocean. Annu. Rev. Mar. Sci. 9, 31–58 (2017).

  34. 34.

    Dellwig, O. et al. A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins. Geochim. Cosmochim. Acta 74, 7100–7115 (2010).

  35. 35.

    Scholz, F. et al. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions. Earth Planet. Sci. Lett. 454, 272–281 (2016).

  36. 36.

    Scholz, F. Identifying oxygen minimum zone-type biogeochemical cycling in Earth history using inorganic geochemical proxies. Earth Sci. Rev. 184, 29–45 (2018).

  37. 37.

    Tsandev, I. & Slomp, C. P. Modeling phosphorous cycling and carbon burial during Cretacious Oceanic Anoxic Events. Earth Planet. Sci. Lett. 286, 71–79 (2009).

  38. 38.

    Kuypers, M. M. M. et al. Orbital forcing of organic carbon burial in the proto-North Atlantic during oceanic anoxic event 2. Earth Planet. Sci. Lett. 228, 465–482 (2004).

  39. 39.

    Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 532, A89 (2011).

  40. 40.

    Berger, A., Loutre, M. F. & Laskar, J. Stability of the astronomical frequencies over the Earth’s history for paleoclimate studies. Science 255, 560–566 (1992).

  41. 41.

    Handoh, I. C. & Lenton, T. M. Periodic mid-Cretaceous oceanic anoxic events linked by oscillations of the phosphorus and oxygen biogeochemical cycles. Glob. Biogeochem. Cycles 17, 1092 (2003).

  42. 42.

    Saltzman, B. & Maasch, D. K. Carbon cycle instability as a cause of the late Pleistocene ice age oscillations: modeling the asymmetric response. Glob. Biogeochem. Cycles 2, 177–185 (1988).

  43. 43.

    Wallmann, K. Is late Quaternary climate change governed by self-sustained oscillations in atmospheric CO2? Geochim. Cosmochim. Acta 132, 413–439 (2014).

  44. 44.

    Keller, D. P., Oschlies, A. & Eby, M. A new marine ecosystem model for the University of Victoria Earth System Climate Model. Geosci. Model Dev. 5, 1195–1220 (2012).

  45. 45.

    Archer, D. A data-driven model of the global calcite lysocline. Glob. Biogeochem. Cycles 10, 511–526 (1996).

  46. 46.

    Weaver, A. J. et al. The UVic Earth System Climate Model: model description, climatology, and applications to past, present and future climates. Atmos. Ocean 39, 361–428 (2001).

  47. 47.

    Flögel, S., Hay, W. W., DeConto, R. M. & Balukhovsk, A. N. Formation of sedimentary bedding couplets in the Western Interior Seaway of North America—implications from climate system modeling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 218, 125–143 (2005).

  48. 48.

    Meissner, K. J., McNeil, B. I., Eby, M. & Wiebe, E. C. The importance of the terrestrial weathering feedback for multimillennial coral reef habitat recovery. Glob. Biogeochem. Cycles 26, GB3017 (2012).

  49. 49.

    Berner, R. A. & Kothavala, Z. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).

  50. 50.

    Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Godderis, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259–1283 (2014).

  51. 51.

    Wallmann, K., Schneider, B. & Sarnthein, M. Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130,000 years. Clim. Past 12, 339–375 (2016).

Download references

Acknowledgements

This study was supported by the German Research Foundation via Collaborative Research Center 754 (Climate–Biogeochemistry Interactions in the Tropical Ocean, SFB 754) and the Emmy Noether Program (independent junior research group ICONOX). Further support was provided by the Helmholtz Association via the ESM project.

Author information

K.W. designed REDBIO and wrote the manuscript. S.F., S.S. and T.P.K. set up the UVic Earth System Model with the mid-Cretaceous continent configuration. F.S. contributed to the discussion of biogeochemical cycling in anoxic oceans. A.W.D supported the development of REDBIO. W.K. helped in the interpretation of the mid-Cretaceous geological record and the spectral analysis of model results.

Competing interests

The authors declare no competing interests.

Correspondence to Klaus Wallmann.

Supplementary information

  1. Supplementary Information

    Supplementary discussions, figures and tables.

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Fig. 1: Response of the REDBIO model to changes in the riverine P flux.
Fig. 2: REDBIO results for constant \(p_{\mathrm {CO}_2}\) (500 ppmv) and riverine P flux (116 Gmol yr1).
Fig. 3: The redox see-saw in the mid-Cretaceous ocean.
Fig. 4: REDBIO results for dynamic pCO2 and riverine P flux.
Fig. 5: Spectral analysis of model results.