Deep Atlantic Ocean carbon storage and the rise of 100,000-year glacial cycles

Abstract

Over the past three million years, Earth’s climate oscillated between warmer interglacials with reduced terrestrial ice volume and cooler glacials with expanded polar ice sheets. These climate cycles, as reflected in benthic foraminiferal oxygen isotopes, transitioned from dominantly 41-kyr to 100-kyr periodicities during the mid-Pleistocene 1,250 to 700 kyr ago (ka). Because orbital forcing did not shift at this time, the ultimate cause of this mid-Pleistocene transition remains enigmatic. Here we present foraminiferal trace element (B/Ca, Cd/Ca) and Nd isotope data that demonstrate a close linkage between Atlantic Ocean meridional overturning circulation and deep ocean carbon storage across the mid-Pleistocene transition. Specifically, between 950 and 900 ka, carbonate ion saturation decreased by 30 µmol kg−1 and phosphate concentration increased by 0.5 µmol kg−1 coincident with a 20% reduction of North Atlantic Deep Water contribution to the abyssal South Atlantic. These results demonstrate that the glacial deep Atlantic carbon inventory increased by approximately 50 Gt during the transition to 100-kyr glacial cycles. We suggest that the coincidence of our observations with evidence for increased terrestrial ice volume reflects how weaker overturning circulation and Southern Ocean biogeochemical feedbacks facilitated deep ocean carbon storage, which lowered the atmospheric partial pressure of CO2 and thereby enabled expanded terrestrial ice volume at the mid-Pleistocene transition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Location of sediment cores and modern Atlantic Ocean hydrography.
Fig. 2: Site 1267 and 607 circulation and trace element records across the MPT.
Fig. 3: Changes in ocean CO2 feedbacks and climate across the MPT.
Fig. 4: Schematics of proposed coupling between the cryosphere, Atlantic MOC and carbon cycle responses across the MPT.

Data availability

The datasets generated during the current study are available as Supplementary Tables 25, and are publicly accessible at the National Centers for Environmental Information (NCEI): https://www.ncdc.noaa.gov/paleo-search/study/26310.

References

  1. 1.

    Hays, J. D., Imbrie, J. & Shackleton, N. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science 194, 1121–1132 (1976).

    Article  Google Scholar 

  2. 2.

    Pisias, N. & Moore, T. The evolution of Pleistocene climate: A time series approach. Earth Planet. Sci. Lett. 52, 450–458 (1981).

    Article  Google Scholar 

  3. 3.

    Imbrie, J. et al. On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography 8, 699–735 (1993).

    Article  Google Scholar 

  4. 4.

    Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M. & Backman, J. Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4, 353–412 (1989).

    Article  Google Scholar 

  5. 5.

    Clark, P. U. et al. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25, 3150–3184 (2006).

    Article  Google Scholar 

  6. 6.

    McClymont, E. L., Sosdian, S. M., Rossell-Melé, A. & Rosenthal, Y. Pleistocene sea-surface temperature evolution: Early cooling, delayed glacial intensification, and implications for the mid-Pleistocene climate transition. Earth Sci. Rev. 123, 173–193 (2013).

    Article  Google Scholar 

  7. 7.

    Clark, P. U. & Pollard, D. Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography 13, 1–9 (1998).

    Article  Google Scholar 

  8. 8.

    Raymo, M. E., Lisiecki, L. E. & Nisancioglu, K. H. Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science 313, 492–495 (2006).

    Article  Google Scholar 

  9. 9.

    Sosdian, S. & Rosenthal, Y. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science 325, 306–310 (2009).

    Article  Google Scholar 

  10. 10.

    Elderfield, H. et al. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337, 704–709 (2012).

    Article  Google Scholar 

  11. 11.

    Chalk, T. B. et al. Causes of ice age intensification across the mid-Pleistocene transition. Proc. Natl Acad. Sci. USA 114, 13114–13119 (2017).

    Article  Google Scholar 

  12. 12.

    Pena, L. D. & Goldstein, S. L. Thermohaline circulation crisis and impacts during the mid-Pleistocene transition. Science 345, 318–322 (2014).

    Article  Google Scholar 

  13. 13.

    Lear, C. H. et al. Breathing more deeply: Deep ocean carbon storage during the mid-Pleistocene climate transition. Geology 44, 1035–1038 (2016).

    Article  Google Scholar 

  14. 14.

    Hodell, D. A., Venz, K. A., Charles, C. D. & Ninnemann, U. S. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosyst. 4, 1004 (2003).

    Article  Google Scholar 

  15. 15.

    Hönisch, B., Hemming, N. G., Archer, A., Siddall, M. & McManus, J. F. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324, 1551–1554 (2009).

    Article  Google Scholar 

  16. 16.

    Higgins, J. A. et al. Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica. Proc. Natl Acad. Sci. USA 112, 6887–6891 (2015).

    Article  Google Scholar 

  17. 17.

    Rohling, E. J. et al. Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508, 477–482 (2014).

    Article  Google Scholar 

  18. 18.

    Broecker, W. S. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11, 151–197 (1982).

    Article  Google Scholar 

  19. 19.

    Raymo, M. E., Oppo, D. W. & Curry, W. The mid-Pleistocene climate transition: a deep sea carbon isotopic perspective. Paleoceanography 12, 546–559 (1997).

    Article  Google Scholar 

  20. 20.

    Zachos, J. C. et al. Shipboard Scientific Party. Site 1267. In Proc. ODP Init. Repts 208 College Station, TX 1–77 (Ocean Drilling Program, 2004).

  21. 21.

    Bell, D. B., Jung, S. J. A., Kroon, D., Lourens, L. J. & Hodell, D. A. Local and regional trends in Plio-Pleistocene δ 18O records from benthic foraminifera. Geochem. Geophys. Geosyst. 15, 3304–3321 (2014).

    Article  Google Scholar 

  22. 22.

    Bell, D. B., Jung, S. J. A. & Kroon, D. The Plio-Pleistocene development of Atlantic deep-water circulation and its influence on climate trends. Quat. Sci. Rev. 123, 265–282 (2015).

    Article  Google Scholar 

  23. 23.

    Yu, J. & Elderfield, H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet. Sci. Lett. 258, 73–86 (2007).

    Article  Google Scholar 

  24. 24.

    Boyle, E. A. Cadmium and δ13C paleochemical distributions during the stage 2 glacial maximum. Annu. Rev. Earth Planet. Sci. 20, 245–287 (1992).

    Article  Google Scholar 

  25. 25.

    Sosdian, S. M., Rosenthal, Y. & Toggweiler, J. R. Deep Atlantic carbonate ion and CaCO3 compensation during the ice ages. Paleoceanogr. Paleoclimatol. 33, 546–562 (2018).

    Article  Google Scholar 

  26. 26.

    Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles 8, 65–80 (1994).

    Article  Google Scholar 

  27. 27.

    Yu, J. et al. Sequestration of carbon in the deep Atlantic during the last glaciation. Nat. Geosci. 9, 319–324 (2016).

    Article  Google Scholar 

  28. 28.

    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    Article  Google Scholar 

  29. 29.

    Hain, M. P., Sigman, D. M. & Haug, G. H. Carbon dioxide effects of Antarctic stratification, North Atlantic intermediate water formation, and Subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model. Glob. Biogeochem. Cycles 24, GB4023 (2010).

    Article  Google Scholar 

  30. 30.

    Kemp, A. E. S., Grigorov, I., Pearce, R. B. & Naveira Garabato, A. C. Migration of the Antarctic polar front through the mid-Pleistocene transition: evidence and climatic implications. Quat. Sci. Rev. 29, 1993–2009 (2010).

    Article  Google Scholar 

  31. 31.

    Martínez-Garcia, A. et al. Southern Ocean dust-climate coupling over the past four million years. Nature 476, 312–315 (2011).

    Article  Google Scholar 

  32. 32.

    Köhler, P. & Bintanja, R. The carbon cycle during the mid Pleistocene transition: The Southern Ocean decoupling hypothesis. Clim. Past 4, 311–332 (2008).

    Article  Google Scholar 

  33. 33.

    Lisiecki, L. E. A benthic δ13C-based proxy for atmospheric pCO2 over the last 1.5 myr. Geophys. Res. Lett. 37, L21708 (2010).

    Article  Google Scholar 

  34. 34.

    Adkins, J. F. The role of deep ocean circulation in setting glacial climates. Paleoceanography 28, 1–23 (2013).

    Article  Google Scholar 

  35. 35.

    Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    Article  Google Scholar 

  36. 36.

    Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).

    Article  Google Scholar 

  37. 37.

    Jansen, M. F. Glacial ocean circulation and stratification explained by reduced atmospheric temperature. Proc. Natl Acad. Sci. USA 114, 45–50 (2017).

    Article  Google Scholar 

  38. 38.

    Watson, A. J., Vallis, G. K. & Nikurashin, M. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nat. Geosci. 8, 861–864 (2015).

    Article  Google Scholar 

  39. 39.

    Broecker, W. S. & Peng, T.-H. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob. Biogeochem. Cycles 1, 15–29 (1987).

    Article  Google Scholar 

  40. 40.

    Boyle, E. A. Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles. Nature 331, 55–56 (1988).

    Article  Google Scholar 

  41. 41.

    Archer, D. & Maier-Reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263 (1994).

    Article  Google Scholar 

  42. 42.

    Brovkin, V., Ganopolski, A., Archer, D. & Rahmstorf, S. Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography 22, PA4204 (2007).

    Article  Google Scholar 

  43. 43.

    Hain, M. P., Sigman, D. M. & Haug, G. H. in Treatise on Geochemistry 2nd edn Vol. 8 (eds Mottl, M. J. & Elderfield, H.) 485–517 (Elsevier, 2013).

  44. 44.

    Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453, 379–382 (2008).

    Article  Google Scholar 

  45. 45.

    Billups, K., York, K. & Bradtmiller, L. I. Water column stratification in the Antarctic zone of the Southern Ocean during the mid-Pleistocene climate transition. Paleoceanogr. Paleoclimatol. 33, 432–442 (2018).

    Article  Google Scholar 

  46. 46.

    Cheng, W., Chiang, J. C. H. & Zhang, D. Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Clim. 26, 7187–7197 (2013).

    Article  Google Scholar 

  47. 47.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  48. 48.

    Bernadello, R. et al. Response of the ocean natural carbon storage to projected twenty-first-century climate change. J. Clim. 27, 2033–2053 (2014).

    Article  Google Scholar 

  49. 49.

    Pérez, F. F. et al. Atlantic Ocean CO2 uptake reduced by weakening of the meridional overturning circulation. Nat. Geosci. 6, 146–152 (2013).

    Article  Google Scholar 

  50. 50.

    Schmieder, F., von Dobeneck, T. & Bliel, U. The mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: Initiation, interim state and terminal event. Earth Planet. Sci. Lett. 179, 539–549 (2000).

    Article  Google Scholar 

  51. 51.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  52. 52.

    Yu, J. et al. Responses of the deep ocean carbonate system to carbon reorganization during the last glacial-interglacial cycle. Quat. Sci. Rev. 76, 39–52 (2013).

    Article  Google Scholar 

  53. 53.

    Rosenthal, Y., Boyle, E. A. & Labeyrie, L. Last Glacial Maximum paleochemistry and deepwater circulation in the Southern Ocean: evidence from foraminiferal cadmium. Paleoceanography 12, 787–796 (1997).

    Article  Google Scholar 

  54. 54.

    Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).

    Article  Google Scholar 

  55. 55.

    Yu, J., Elderfield, H., Greaves, M. & Day, J. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosyst. 8, Q06016 (2007).

    Article  Google Scholar 

  56. 56.

    Ford, H. L., Sosdian, S. M., Rosenthal, Y. & Raymo, M. E. Gradual and abrupt changes during the mid-Pleistocene transition. Quat. Sci. Rev. 148, 222–233 (2016).

    Article  Google Scholar 

  57. 57.

    Yu, J., Day, J., Greaves, M. & Elderfield, H. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochem. Geophys. Geosyst. 6, Q08P01 (2005).

    Article  Google Scholar 

  58. 58.

    Roberts, N. L., Piotrowski, A. M., McManus, J. F. & Keigwin, L. D. Synchronous deglacial overturning and water mass source changes. Science 327, 75–78 (2010).

    Article  Google Scholar 

  59. 59.

    Tanaka, T. et al. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).

    Article  Google Scholar 

  60. 60.

    Jacobsen, S. B. & Wasserburg, G. J. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155 (1980).

    Article  Google Scholar 

  61. 61.

    Rae, J. W. B., Foster, G. L., Schmidt, D. N. & Elliott, T. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet. Sci. Lett. 302, 403–413 (2011).

    Article  Google Scholar 

  62. 62.

    Raitzsch, M., Hathorne, E. C., Kuhnert, H., Groeneveld, J. & Bickert, T. Modern and late Pleistocene B/Ca ratios of the benthic foraminifer Planulina wuellerstorfi determined with laser ablation ICP-MS. Geology 39, 1039–1042 (2011).

    Article  Google Scholar 

  63. 63.

    Yu, J., Elderfield, H. & Piotrowski, A. Seawater carbonate ion-δ13C systematics and application to glacial-interglacial North Atlantic Ocean circulation. Earth Planet. Sci. Lett. 271, 209–220 (2008).

    Article  Google Scholar 

  64. 64.

    van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E. & Wallace, D. W. R. MATLAB Program Developed for CO2 System Calculations. ORNL/CDIAC-105b (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, 2011).

  65. 65.

    Yu, J. et al. Loss of carbon from the deep sea since the Last Glacial Maximum. Science 330, 1084–1087 (2010).

    Article  Google Scholar 

  66. 66.

    Sexton, P. F. & Barker, S. Onset of ‘Pacific-style’ deep-sea sedimentary carbonate cycles at the mid-Pleistocene transition. Earth Planet. Sci. Lett. 321322, 81–94 (2012).

    Article  Google Scholar 

  67. 67.

    Boyle, E. A. Cadmium: chemical tracer of deepwater paleoceanography. Paleoceanography 3, 471–489 (1988).

    Article  Google Scholar 

  68. 68.

    Marchitto, T. M. & Broecker, W. S. Deep water mass geometry in the glacial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst. 7, Q12003 (2006).

    Google Scholar 

  69. 69.

    de Baar, H. J. W., Saager, P. M., Nolting, R. F. & van der Meer, J. Cadmium versus phosphate in the world ocean. Mar. Chem. 46, 261–281 (1994).

    Article  Google Scholar 

  70. 70.

    Elderfield, H. & Rickaby, R. E. M. Oceanic Cd/P ratio and nutrient utilisation in the glacial Southern Ocean. Nature 405, 305–310 (2000).

    Article  Google Scholar 

  71. 71.

    Baars, O., Abouchami, W., Galer, S. J. G., Boye, M. & Croot, P. L. Dissolved cadmium in the Southern Ocean: Distribution, speciation, and relation to phosphate. Limnol. Oceanogr. 59, 385–399 (2014).

    Article  Google Scholar 

  72. 72.

    Quay, P. & Wu, J. Impact of end-member mixing on depth distributions of δ 13C, cadmium and nutrients in the N. Atlantic Ocean. Deep Sea Res. II 116, 107–116 (2015).

    Article  Google Scholar 

  73. 73.

    Mawji, E. et al. The GEOTRACES Intermediate Data Product 2014. Mar. Chem. 177, 1–8 (2015).

    Article  Google Scholar 

  74. 74.

    Roshan, S. & Wu, J. Cadmium regeneration within the North Atlantic. Glob. Biogeochem. Cycles 29, 2082–2094 (2015).

    Article  Google Scholar 

  75. 75.

    Clark, W. C. Carbon Dioxide Review: 1982 467 (Oxford Univ. Press, 1982).

  76. 76.

    Feely, R. A. et al. In situ calcium carbonate dissolution in the Pacific Ocean. Glob. Biogeochem. Cycles 16, 1144 (2002).

    Article  Google Scholar 

  77. 77.

    Olsen, A. & Ninnemann, U. Large δ13C gradients in the preindustrial North Atlantic revealed. Science 330, 658–659 (2010).

    Article  Google Scholar 

  78. 78.

    Ninnemann, U. S. & Charles, C. D. Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability. Earth Planet. Sci. Lett. 201, 383–396 (2002).

    Article  Google Scholar 

  79. 79.

    Marinov, I. et al. Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2. Glob. Biogeochem. Cycles 22, GB3007 (2008).

    Article  Google Scholar 

  80. 80.

    Jaccard, S. L. et al. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool. Earth Planet. Sci. Lett. 277, 156–165 (2009).

    Article  Google Scholar 

  81. 81.

    Broecker, W. S., Takahashi, T. & Takahashi, T. Sources and flow patterns of deep-ocean waters as deduced from potential temperature, salinity, and initial phosphate concentration. J. Geophys. Res. 90, 6925–6939 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Bolge, J. Falsetta, K. Esswein and A. Dial for laboratory assistance, and D. Sigman for discussions. This research was supported by NSF grant no. OCE 14-36079. J.R.F. acknowledges support from NSF grant no. DGE 16-44869. L.P. acknowledges support from the Ramón y Cajal program and grant no. CTM2016-75411-R (MINECO, Spain).

Author information

Affiliations

Authors

Contributions

J.R.F., L.D.P., B.H., M.E.R. and S.L.G. designed the study. J.R.F., D.K., S.L.J. and D.B.B. designed the sampling strategy. J.R.F., L.L.H. and H.L.F. performed trace element analyses. M.J.-S., M.Y. and J.K. performed Nd sample processing and isotopic analyses. All authors contributed to the interpretation of results and manuscript preparation.

Corresponding author

Correspondence to J. R. Farmer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Discussion

Supplementary Tables

Supplementary Data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farmer, J.R., Hönisch, B., Haynes, L.L. et al. Deep Atlantic Ocean carbon storage and the rise of 100,000-year glacial cycles. Nat. Geosci. 12, 355–360 (2019). https://doi.org/10.1038/s41561-019-0334-6

Download citation

Further reading