Abstract

Reports of methane detection in the Martian atmosphere have been intensely debated. The presence of methane could enhance habitability and may even be a signature of life. However, no detection has been confirmed with independent measurements. Here, we report a firm detection of 15.5 ± 2.5 ppb by volume of methane in the Martian atmosphere above Gale Crater on 16 June 2013, by the Planetary Fourier Spectrometer onboard Mars Express, one day after the in situ observation of a methane spike by the Curiosity rover. Methane was not detected in other orbital passages. The detection uses improved observational geometry, as well as more sophisticated data treatment and analysis, and constitutes a contemporaneous, independent detection of methane. We perform ensemble simulations of the Martian atmosphere, using stochastic gas release scenarios to identify a potential source region east of Gale Crater. Our independent geological analysis also points to a source in this region, where faults of Aeolis Mensae may extend into proposed shallow ice of the Medusae Fossae Formation and episodically release gas trapped below or within the ice. Our identification of a probable release location will provide focus for future investigations into the origin of methane on Mars.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The PFS data used in this study are publicly available via the ESA Planetary Science Archive. References of terrestrial gas seepage data are reported in the Supplementary Information. Data used to map water-equivalent hydrogen are available from J. T. Wilson (Johns Hopkins University Applied Physics Laboratory, Jack.Wilson@jhuapl.edu). All other geological data of Mars used in this study are in the public domain and include published papers, data provided in the US Geological Survey Mars Global GIS version 2.1 (which can be accessed on the Mars GIS FTP site: ftp://pdsimage2.wr.usgs.gov/pub/pigpen/mars/Global_GIS_Mars/; file name: MarsGIS_Equi0_v21.zip (note that v21 is used in the file name for v2.1)), and Context Camera and Visible data image mosaics provided by Google Earth (Mars).

Code availability

The core GEM model used for this work is publicly available through http://collaboration.cmc.ec.gc.ca/science/rpn.comm/. The routines that were modified for the application to Mars are explained in ref. 39 and available upon request from F.D. (Frank.Daerden@aeronomie.be) and L.N. (Lori.Neary@aeronomie.be). The model output used in this paper is available upon request from F.D., L.N. and S.V. (Sebastien.Viscardy@aeronomie.be). The equations for the statistical analysis are included in the Methods. The computer code to reproduce the results is available from S.V.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Krasnopolsky, V. A., Maillard, J. P. & Owen, T. C. Detection of methane in the Martian atmosphere: evidence for life? Icarus 172, 537–547 (2004).

  2. 2.

    Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. Detection of methane in the atmosphere of Mars. Science 306, 1758–1761 (2004).

  3. 3.

    Mumma, M. J. et al. Strong release of methane on Mars in northern summer 2003. Science 323, 1041–1045 (2009).

  4. 4.

    Webster, C. R. et al. Mars methane detection and variability at Gale Crater. Science 347, 415–417 (2015).

  5. 5.

    Yung, Y. et al. Methane on Mars and habitability: challenges and responses. Astrobiology 18, 1221–1242 (2018).

  6. 6.

    Atreya, S. K., Mahaffy, P. R. & Wong, A. S. Methane and related trace species on Mars: origin, loss, implications for life, and habitability. Planet. Space Sci. 55, 358–369 (2007).

  7. 7.

    Oze, C. & Sharma, M. Have olivine, will gas: serpentinization and the abiogenetic production of methane on Mars. Geophys. Res. Lett. 32, L10203 (2005).

  8. 8.

    Krasnopolsky, V. A. Some problems related to the origin of methane on Mars. Icarus 180, 359–367 (2006).

  9. 9.

    Chassefière, E. Metastable methane clathrate particles as a source of methane to the Martian atmosphere. Icarus 204, 137–144 (2009).

  10. 10.

    Gough, R. V., Tolbert, M. A., McKay, C. P. & Toon, O. B. Methane adsorption on a Martian soil analog: an abiogenic explanation for methane variability in the Martian atmosphere. Icarus 207, 165–174 (2010).

  11. 11.

    Meslin, P.-Y., Gough, R., Lèfevre, L. & Forget, F. Little variability of methane on Mars induced by adsorption in the regolith. Planet. Space Sci. 59, 247–258 (2011).

  12. 12.

    Keppler, F. et al. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. Nature 486, 93–96 (2012).

  13. 13.

    Schuerger, A., Moores, J. E., Clausen, C. A., Barlow, N. G. & Britt, D. T. Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions. J. Geophys. Res. 117, E08007 (2012).

  14. 14.

    McMahon, S., Parnell, J. & Blamey, N. J. F. Sampling methane in basalt on Earth and Mars. Int. J. Astrobiol. 12, 113–122 (2013).

  15. 15.

    Poch, O., Kaci, S., Stalport, F., Szopa, C. & Coll, P. Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions. Icarus 242, 50–63 (2014).

  16. 16.

    Oehler, D. Z. & Etiope, G. Methane seepage on Mars: where to look and why. Astrobiology 17, 1233–1264 (2017).

  17. 17.

    Fries, M. et al. A cometary origin for Martian atmospheric methane. Geochem. Perspect. Lett. 2, 10–23 (2016).

  18. 18.

    Geminale, A., Formisano, V. & Giuranna, M. Methane in Martian atmosphere: average spatial, diurnal, and seasonal behavior. Planet. Space Sci. 56, 1194–2003 (2008).

  19. 19.

    Geminale, A., Formisano, V. & Sindoni, G. Mapping methane in Martian atmosphere with PFS-MEx data. Planet. Space Sci. 59, 137–148 (2011).

  20. 20.

    Fonti, S. & Marzo, G. A. Mapping the methane on Mars. Astron. Astrophys. 512, A51 (2010).

  21. 21.

    Krasnopolsky, V. A. A sensitive search for methane and ethane on Mars. In EPSC-DPS Joint Meeting 2011 (Copernicus, 2011).

  22. 22.

    Krasnopolsky, V. A. Search for methane and upper limits to ethane and SO2 on Mars. Icarus 217, 144–152 (2012).

  23. 23.

    Villanueva, G. L. et al. A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus 223, 11–27 (2013).

  24. 24.

    Webster, C. R. et al. Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 360, 1093–1096 (2018).

  25. 25.

    Summers, M. E., Lieb, B. J., Chapman, E. & Yung, Y. L. Atmospheric biomarkers of subsurface life on Mars. Geophys. Res. Lett. 29, 2171 (2002).

  26. 26.

    Lefèvre, F. & Forget, F. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460, 720–723 (2009).

  27. 27.

    Atreya, S. K. et al. Methane on Mars: current observations, interpretations, and future plans. Planet. Space Sci. 59, 133–136 (2011).

  28. 28.

    Viscardy, S., Daerden, F. & Neary, L. Formation of layers of methane in the atmosphere of Mars after surface release. Geophys. Rev. Lett. 43, 1868–1875 (2016).

  29. 29.

    Holmes, J. A., Patel, M. R. & Lewis, S. R. The vertical transport of methane from different potential emission types on Mars. Geophys. Res. Lett. 44, 8611–8620 (2017).

  30. 30.

    Holmes, J. A., Lewis, S. R. & Patel, M. R. Analyzing the consistency of Martian methane observations by investigation of global methane transport. Icarus 257, 23–32 (2015).

  31. 31.

    Farrell, W. M., Delory, G. T. & Atreya, S. K. Martian dust storms as a possible sink of atmospheric methane. J. Geophys. Res. 33, L21203 (2006).

  32. 32.

    Atreya, S. K. et al. Oxidant enhancement in Martian dust devils and storms: implications for life and habitability. Astrobiology 6, 439–450 (2006).

  33. 33.

    Delory, G. T. et al. Oxidant enhancement in Martian dust devils and storms: storm electric fields and electron dissociative attachment. Astrobiology 6, 451–462 (2006).

  34. 34.

    Knak Jensen, S. J. et al. A sink for methane on Mars? The answer is blowing in the wind. Icarus 236, 24–27 (2014).

  35. 35.

    Zahnle, K. J., Freedman, R. S. & Catling, D. C. Is there methane on Mars? Icarus 212, 493–503 (2011).

  36. 36.

    Zahnle, K. J. Play it again, SAM. Science 347, 370–371 (2015).

  37. 37.

    Wilson, A. & Chicarro, A. Mars Express: The Scientific Payload SP-1240 (European Space Agency, 2004).

  38. 38.

    Formisano, V. et al. The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission. Planet. Space Sci. 53, 963–974 (2005).

  39. 39.

    Neary, L. & Daerden, F. The GEM-Mars general circulation model for Mars: description and evaluation. Icarus 300, 458–476 (2018).

  40. 40.

    Daerden, F. et al. A solar escalator on Mars: self-lifting of dust layers by radiative heating. Geophys. Res. Lett. 42, 7319–7326 (2015).

  41. 41.

    Etiope, G. & Oehler, D. Z. Methane spikes, background seasonality and non-detections on Mars: a geological perspective. Planet. Space Sci. https://doi.org/10.1016/j.pss.2019.02.001 (in the press).

  42. 42.

    Kerber, L. & Head, J. W. The age of the Medusae Fossae Formation: evidence of Hesperian emplacement from crater morphology, stratigraphy, and ancient lava contacts. Icarus 206, 669–684 (2010).

  43. 43.

    Wilson, J. T. et al. Equatorial locations of water on Mars: improved resolution maps based on Mars Odyssey Neutron Spectrometer data. Icarus 299, 148–160 (2018).

  44. 44.

    Voosen, P. Martian methane—spotted in 2004—has mysteriously vanished. Science http://doi.org/10.1126/science.aaw3667 (2018).

  45. 45.

    Etiope, G. Understanding the origin of methane on Mars through isotopic and molecular data from the ExoMars orbiter. Planet. Space Sci. 159, 93–96 (2018).

  46. 46.

    Vandaele, A. C. et al. NOMAD, an integrated suite of three spectrometers for the ExoMars Trace Gas Mission: technical description, science objectives and expected performance. Space Sci. Rev. 214, 80 (2018).

  47. 47.

    Korablev, O. et al. The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Sci. Rev. 214, 7 (2018).

  48. 48.

    Knapmeyer, M. et al. Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. 111, E11006 (2006).

  49. 49.

    Lanz, J. K. & Saric, M. B. Cone fields in SW Elysium Planitia: hydrothermal venting on Mars. J. Geophys. Res. 114, E02008 (2009).

  50. 50.

    Martínez-Alonso, S., Mellon, M. T., McEwen, A. S. & the HiRISE Team. Geological study of a section of Aeolis Mensae, a possible site favorable for life. In 7th International Conference on Mars Abstract 1353, 3262 (2007).

  51. 51.

    Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944).

  52. 52.

    Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963).

  53. 53.

    Ignatiev, N. I., Grassi, D. & Zasova, L. V. Planetary Fourier Spectrometer data analysis: fast radiative transfer models. Planet. Space Sci. 53, 1035–1042 (2005).

  54. 54.

    Stamnes, K., Tsay, S. C., Wiscombe, W. & Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27, 2502–2509 (1988).

  55. 55.

    Rothman, L. S. et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

  56. 56.

    Fiorenza, C. & Formisano, V. A solar spectrum for PFS data analysis. Planet. Space Sci. 53, 1009–1016 (2004).

  57. 57.

    Kurucz, R. The solar spectrum: atlases and line identifications. In Laboratory and Astronomical High Resolution Spectra (eds Sauval, A. J., Blomme, R. & Grevesse, N.) Vol. 81, 17–31 (Astronomical Society of the Pacific, 1995).

  58. 58.

    Millour, E. et al. The Mars Climate Database (MCD version 5.2). In European Planetary Science Congress 2015 10 (Copernicus 2015).

  59. 59.

    Forget, F. et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24176 (1999).

  60. 60.

    Grassi, D. et al. Methods for the analysis of data from the Planetary Fourier Spectrometer on the Mars Express Mission. Planet. Space Sci. 53, 1017–1034 (2005).

  61. 61.

    Wolkenberg, P. et al. Characterization of dust activity on Mars from MY27 to MY32 by PFS-MEX observations. Icarus 310, 32–47 (2018).

  62. 62.

    Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. T. Numerical Recipes: The Art of Scientific Computing 3rd edn (Cambridge Univ. Press, 2007).

  63. 63.

    Smith, M., Daerden, F., Neary, L. & Khayat, S. The climatology of carbon monoxide and water vapor on Mars as observed by CRISM and modeled by the GEM-Mars general circulation model. Icarus 301, 117–131 (2018).

  64. 64.

    Musiolik, G. et al. Saltation under Martian gravity and its influence on the global dust distribution. Icarus 306, 25–31 (2018).

  65. 65.

    Vandaele, A. C. et al. Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet. Space Sci. 119, 233–249 (2015).

  66. 66.

    Robert, S. et al. Expected performances of the NOMAD/ExoMars instrument. Planet. Space Sci. 124, 94–104 (2016).

  67. 67.

    Robert, S. et al. Two test-cases for synergistic detections in the Martian atmosphere: carbon monoxide and methane. J. Quant. Spectrosc. Radiat. Transf. 189, 86–104 (2017).

  68. 68.

    Montabone, L. et al. Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015).

  69. 69.

    Abrams, M. A. Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Mar. Petroleum Geol. 22, 457–477 (2005).

  70. 70.

    Etiope, G. & Klusman, R. W. Microseepage in drylands: flux and implications in the global atmospheric source/sink budget of methane. Global Planet. Change 72, 265–274 (2010).

  71. 71.

    Etiope, G., Nakada, R., Tanaka, K. & Yoshida, N. Gas seepage from Tokamachi mud volcanoes, onshore Niigata Basin (Japan): origin, post-genetic alterations and CH4–CO2 fluxes. Appl. Geochem. 26, 348–359 (2011).

  72. 72.

    Klusman, R. W., Leopold, M. E. & LeRoy, M. P. Seasonal variation in methane fluxes from sedimentary basins to the atmosphere: results from chamber measurements and modeling of transport from deep sources. J. Geophys. Res. Atmos. 105, 24661–24670 (2000).

  73. 73.

    Macgregor, D. S. Relationships between seepage, tectonics and subsurface petroleum reserves. Mar. Petroleum Geol. 10, 606–619 (1993).

  74. 74.

    Malmqvist, L. & Kristiansson, K. A physical mechanism for the release of free gases in the lithosphere. Geoexploration 23, 447–453 (1985).

  75. 75.

    Mazzini, A. & Etiope, G. Mud volcanism: an updated review. Earth Sci. Rev. 168, 81–112 (2017).

  76. 76.

    Schumacher, D. & Abrams M.A. (eds) Hydrocarbon Migration and Its Near-Surface Expression. AAPG Memoir 66, 446 (American Association of Petroleum Geologists, 1996).

Download references

Acknowledgements

We thank Environment and Climate Change Canada for providing the GEM model for research purposes, and for support. We thank J. T. Wilson for providing the data used to map the water-equivalent hydrogen from improved-resolution Mars Odyssey Neutron Spectrometer data. We thank O. Witasse, D. Titov, P. Martin and the ESA Science Ground Segment and Flight Control teams for successful operation of the MEx mission over more than a decade. The PFS experiment was built at the Institute for Space Astrophysics and Planetology (formerly the Institute for Interplanetary Space Physics) of the National Institute for Astrophysics, and is currently funded by the Italian Space Agency (agreement number 2018-2-HH.0) in the context of the science activities for the Nadir and Occultation for Mars Discovery spectrometer and the Atmospheric Chemistry Suite onboard the Trace Gas Orbiter ExoMars 2016, and for PFS-MEx. D.O. is supported by the Planetary Science Institute. S.V. and L.N. are supported by the ESA PRODEX Office (contract number Prodex_NOMADMarsScience_C4000121493_2017-2019). S.V. is also supported by the ‘Excellence of Science’ project ‘Evolution and Tracers of Habitability on Mars and the Earth’ (FNRS 30442502). P.W. is supported by the ‘UPWARDS’ project, funded from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 633127. S.A. has been supported by the FNRS ‘CRAMIC’ project under grant agreement number T.0171.16. This paper is dedicated to our colleague, V. Formisano, who recently passed away.

Author information

Affiliations

  1. Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica, Rome, Italy

    • Marco Giuranna
    • , Giuseppe Etiope
    • , Alessandro Aronica
    • , Paulina Wolkenberg
    •  & Shohei Aoki
  2. Royal Belgian Institute for Space Aeronomy, Brussels, Belgium

    • Sébastien Viscardy
    • , Frank Daerden
    • , Lori Neary
    •  & Shohei Aoki
  3. Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy

    • Giuseppe Etiope
  4. Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania

    • Giuseppe Etiope
  5. Planetary Science Institute, Tucson, AZ, USA

    • Dorothy Oehler
  6. Centrum Badań Kosmicznych Polska Akademia Nauk, Warsaw, Poland

    • Paulina Wolkenberg
  7. Fonds National de la Recherche Scientifique, Brussels, Belgium

    • Shohei Aoki
  8. Department of Geophysics, Tohoku University, Sendai, Japan

    • Shohei Aoki
  9. European Space Astronomy Centre, Madrid, Spain

    • Alejandro Cardesín-Moinelo
    • , Julia Marín-Yaseli de la Parra
    •  & Donald Merritt
  10. Agenzia Spaziale Italiana, Sede di Matera, Italy

    • Marilena Amoroso

Authors

  1. Search for Marco Giuranna in:

  2. Search for Sébastien Viscardy in:

  3. Search for Frank Daerden in:

  4. Search for Lori Neary in:

  5. Search for Giuseppe Etiope in:

  6. Search for Dorothy Oehler in:

  7. Search for Vittorio Formisano in:

  8. Search for Alessandro Aronica in:

  9. Search for Paulina Wolkenberg in:

  10. Search for Shohei Aoki in:

  11. Search for Alejandro Cardesín-Moinelo in:

  12. Search for Julia Marín-Yaseli de la Parra in:

  13. Search for Donald Merritt in:

  14. Search for Marilena Amoroso in:

Contributions

M.G. and S.A. developed the new approach to PFS data selection and treatment. M.G. performed the CH4 retrieval. A.A., P.W. and S.A. supervised the PFS science operations, planning, commanding and data archiving. A.C.-M. provided ancillary data and other geometrically relevant models for PFS and MEx through the SPICE software suite. A.C.-M., J.M.-Y.l.P. and D.M. contributed to planning the PFS observations and successful implementation and execution of the PFS spot-tracking observations. V.F. developed the concept and was the former principal investigator for PFS-MEx. S.V., F.D. and L.N. developed and performed the GCM simulations and analysis. G.E. and D.O. performed the geological analysis and evaluation of terrestrial seepage patterns. M.A. was responsible for the PFS-MEx project from the Italian Space Agency side. All authors contributed to interpretation of the results and preparation of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Marco Giuranna.

Supplementary information

  1. Supplementary information

    Supplementary text, figures and tables

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-019-0331-9

Further reading