Methanogenesis sustained by sulfide weathering during the Great Oxidation Event


The Great Oxidation Event following the end of the Archaean eon (~2.4 Ga) was a profound turning point in the history of Earth and life, but the relative importance of various contributing factors remains an intriguing puzzle. Controls on methane flux to the atmosphere were of particular consequence; too much methane would have inhibited a persistent rise of O2, but too little may have plunged Earth into severe and prolonged ice ages. Here, we document a shift in the weathering reactions controlling the ocean-bound flux of nickel—an essential micronutrient for the organisms that produced methane in Precambrian oceans—by applying Ni stable isotope analysis to Mesoarchaean and Palaeoproterozoic glacial sediments. Although Ni flux to the ocean dropped dramatically as Ni content of the continental crust decreased, the onset of sulfide weathering delivered a small, but vital, flux of Ni to the oceans, sustaining sufficient methane production to prevent a permanent icehouse, while allowing O2 to rise.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Compositional evolution of atmosphere, oceans and continental crust through time.
Fig. 2: Schematic comparison of Ni and methane cycling at different times.
Fig. 3: Stratigraphic synthesis of the Huronian and Transvaal supergroups, showing trends in total sulfur and δ60/58Ni in composite diamictites.

Data availability

All data supporting the findings of this study are available within the main text, figures and Supplementary Information files.


  1. 1.

    Holland, H. D. The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. Lond. B 361, 903–915 (2006).

    Article  Google Scholar 

  2. 2.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  Google Scholar 

  3. 3.

    Farquhar, J., Bao, H. & Thiemens, M. J. S. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Article  Google Scholar 

  4. 4.

    Philippot, P. et al. Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event. Nat. Commun. 9, 2245 (2018).

    Article  Google Scholar 

  5. 5.

    Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).

    Article  Google Scholar 

  6. 6.

    Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–538 (2013).

    Article  Google Scholar 

  7. 7.

    Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D. & Lyons, T. W. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009).

    Article  Google Scholar 

  8. 8.

    Catling, D. C., Zahnle, K. J. & McKay, C. P. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001).

    Article  Google Scholar 

  9. 9.

    Keller, C. B. & Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485, 490–493 (2012).

    Article  Google Scholar 

  10. 10.

    Lee, C.-T. A. et al. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci. 9, 417–424 (2016).

    Article  Google Scholar 

  11. 11.

    Smit, M. A. & Mezger, K. Earth’s early O2 cycle suppressed by primitive continents. Nat. Geosci. 10, 788–792 (2017).

    Article  Google Scholar 

  12. 12.

    Tang, M., Chen, K. & Rudnick, R. L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372–375 (2016).

    Article  Google Scholar 

  13. 13.

    Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007).

    Article  Google Scholar 

  14. 14.

    Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011).

    Article  Google Scholar 

  15. 15.

    Buick, R. When did oxygenic photosynthesis evolve? Phil. Trans. R. Soc. Lond. B 363, 2731–2743 (2008).

    Article  Google Scholar 

  16. 16.

    Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).

    Article  Google Scholar 

  17. 17.

    Lalonde, S. V. & Konhauser, K. O. Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 112, 995–1000 (2015).

    Article  Google Scholar 

  18. 18.

    Kopp, R. E., Kirschvink, J. L., Hilburn, I. A. & Nash, C. Z. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 102, 11131–11136 (2005).

    Article  Google Scholar 

  19. 19.

    Kasting, J. F. Methane and climate during the Precambrian era. Precambrian Res. 137, 119–129 (2005).

    Article  Google Scholar 

  20. 20.

    Zahnle, K., Claire, M. & Catling, D. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006).

    Article  Google Scholar 

  21. 21.

    Evans, D., Beukes, N. & Kirschvink, J. Low-latitude glaciation in the Palaeoproterozoic era. Nature 386, 262–266 (1997).

    Article  Google Scholar 

  22. 22.

    Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson prize lecture. Microbiology 144, 2377–2406 (1998).

    Article  Google Scholar 

  23. 23.

    Konhauser, K. O. et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458, 750–753 (2009).

    Article  Google Scholar 

  24. 24.

    Konhauser, K. O. et al. The Archean nickel famine revisited. Astrobiology 15, 804–815 (2015).

    Article  Google Scholar 

  25. 25.

    Glass, J. & Dupont, C. The Biological Chemistry of Nickel 12–26 (Royal Society of Chemistry, 2017).

  26. 26.

    Large, R. R. et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet. Sci. Lett. 389, 209–220 (2014).

    Article  Google Scholar 

  27. 27.

    Gallagher, M., Turner, E. & Kamber, B. In situ trace metal analysis of Neoarchaean—Ordovician shallow-marine microbial-carbonate-hosted pyrites. Geobiology 13, 316–339 (2015).

    Article  Google Scholar 

  28. 28.

    Condie, K. C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol. 104, 1–37 (1993).

    Article  Google Scholar 

  29. 29.

    Taylor, S. & McLennan, S. The Continental Crust: Its Evolution Composition (Blackwell, London, 1985).

  30. 30.

    Greber, N. D. et al. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 357, 1271–1274 (2017).

    Article  Google Scholar 

  31. 31.

    Gaschnig, R. M. et al. Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites. Geochim. Cosmochim. Acta 186, 316–343 (2016).

    Article  Google Scholar 

  32. 32.

    Li, S., Gaschnig, R. M. & Rudnick, R. L. Insights into chemical weathering of the upper continental crust from the geochemistry of ancient glacial diamictites. Geochim. Cosmochim. Acta 176, 96–117 (2016).

    Article  Google Scholar 

  33. 33.

    Gueguen, B., Rouxel, O., Ponzevera, E., Bekker, A. & Fouquet, Y. Nickel isotope variations in terrestrial silicate rocks and geological reference materials measured by MC-ICP-MS. Geostand. Geoanal. Res. 37, 297–317 (2013).

    Article  Google Scholar 

  34. 34.

    Hofmann, A. et al. Comparing orthomagmatic and hydrothermal mineralization models for komatiite-hosted nickel deposits in Zimbabwe using multiple-sulfur, iron, and nickel isotope data. Miner. Deposita 49, 75–100 (2014).

    Article  Google Scholar 

  35. 35.

    Cameron, V., Vance, D., Archer, C. & House, C. H. A biomarker based on the stable isotopes of nickel. Proc. Natl Acad. Sci. USA 106, 10944–10948 (2009).

    Article  Google Scholar 

  36. 36.

    Nesbitt, H. & Young, G. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717 (1982).

    Article  Google Scholar 

  37. 37.

    Spivak-Birndorf, L. J., Wang, S.-J., Bish, D. L. & Wasylenki, L. E. Nickel isotope fractionation during continental weathering. Chem. Geol. 476, 316–326 (2017).

    Article  Google Scholar 

  38. 38.

    Johnson, J. E., Gerpheide, A., Lamb, M. P. & Fischer, W. W. O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Geol. Soc. Am. Bull. 126, 813–830 (2014).

    Article  Google Scholar 

  39. 39.

    Konhauser, K. O. et al. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478, 369–373 (2011).

    Article  Google Scholar 

  40. 40.

    Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, 1984).

  41. 41.

    Stüeken, E. E., Catling, D. C. & Buick, R. Contributions to late Archaean sulphur cycling by life on land. Nat. Geosci. 5, 722–725 (2012).

    Article  Google Scholar 

  42. 42.

    Lovley, D. R. & Klug, M. J. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Env. Microbiol. 45, 187–192 (1983).

    Google Scholar 

  43. 43.

    Catling, D., Claire, M. & Zahnle, K. Anaerobic methanotrophy and the rise of atmospheric oxygen. Phil. Trans. A Math. Phys. Eng. Sci. 365, 1867–1888 (2007).

    Article  Google Scholar 

  44. 44.

    Gumsley, A. P. et al. Timing and tempo of the Great Oxidation Event. Proc. Natl Acad. Sci. USA 114, 1811–1816 (2017).

    Article  Google Scholar 

  45. 45.

    Ulrich, T., Long, D., Kamber, B. & Whitehouse, M. In situ trace element and sulfur isotope analysis of pyrite in a Paleoproterozoic gold placer deposit, Pardo and Clement Townships, Ontario, Canada. Econ. Geol. 106, 667–686 (2011).

    Article  Google Scholar 

  46. 46.

    Wang, S.-J. & Wasylenki, L. E. Experimental constraints on reconstruction of Archean seawater Ni isotopic composition from banded iron formations. Geochim. Cosmochim. Acta 206, 137–150 (2017).

    Article  Google Scholar 

  47. 47.

    Wasylenki, L. E., Howe, H. D., Spivak-Birndorf, L. J. & Bish, D. L. Ni isotope fractionation during sorption to ferrihydrite: implications for Ni in banded iron formations. Chem. Geol. 400, 56–64 (2015).

    Article  Google Scholar 

  48. 48.

    Cameron, V. & Vance, D. Heavy nickel isotope compositions in rivers and the oceans. Geochim. Cosmochim. Acta 128, 195–211 (2014).

    Article  Google Scholar 

  49. 49.

    Ratié, G. et al. Nickel isotope fractionation during tropical weathering of ultramafic rocks. Chem. Geol. 402, 68–76 (2015).

    Article  Google Scholar 

  50. 50.

    Coetzee, L., Beukes, N., Gutzmer, J. & Kakegawa, T. Links of organic carbon cycling and burial to depositional depth gradients and establishment of a snowball Earth at 2.3 Ga. Evidence from the Timeball Hill Formation, Transvaal Supergroup, South Africa. S. Afr. J. Geol. 109, 109–122 (2006).

    Article  Google Scholar 

Download references


We thank W. Maier and E. Ripley for providing the komatiite samples. The research was supported by the National Science Foundation EAR-1424676 to L.E.W. and EAR-1321954 to R.L.R. and R.M.G.

Author information




S.-J.W. conceived the project, conducted the experimental analyses, interpreted the data and drafted the manuscript. L.E.W. provided funding and facilities, augmented the data interpretation and substantially edited the manuscript. R.L.R., R.M.G. and H.W. provided samples and participated in discussion of the interpretations and manuscript editing.

Corresponding author

Correspondence to Shui-Jiong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary information, Supplementary Figs 1–6 and Tables 1–3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, SJ., Rudnick, R.L., Gaschnig, R.M. et al. Methanogenesis sustained by sulfide weathering during the Great Oxidation Event. Nat. Geosci. 12, 296–300 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing