Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall

abstract

With ongoing global warming, the amount and frequency of precipitation in the tropics is projected to change substantially. While it has been shown that tropical forests and savannahs are sustained within the same intermediate mean annual precipitation range, the mechanisms that lead to the resilience of these ecosystems are still not fully understood. In particular, the long-term impact of rainfall variability on resilience is as yet unclear. Here we present observational evidence that both tropical forest and savannah exposed to a higher rainfall variability—in particular on interannual scales—during their long-term past are overall more resilient against climatic disturbances. Based on precipitation and tree cover data in the Brazilian Amazon basin, we constructed potential landscapes that enable us to systematically measure the resilience of the different ecosystems. Additionally, we infer that shifts from forest to savannah due to decreasing precipitation in the future are more likely to occur in regions with a precursory lower rainfall variability. Long-term rainfall variability thus needs to be taken into account in resilience analyses and projections of vegetation response to climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Bistable regions of rainforest and savannah.
Fig. 2: Potential of tree cover fractions for different precipitation regimes.
Fig. 3: Resilience of savannah and rainforest for different precipitation regimes.
Fig. 4: Potential shifts of vegetation states under future climate change.

Code availability

The computer code used for this study is available on request.

Data availability

The data reported in this paper are extracted from the publicly available sites of MODIS (https://lpdaac.usgs.gov/)52, IBGE (https://www.ibge.gov.br/)45 and CRU (https://crudata.uea.ac.uk/)19.

References

  1. 1.

    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    Article  Google Scholar 

  2. 2.

    Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).

    Article  Google Scholar 

  3. 3.

    Rammig, A. et al. Estimating the risk of Amazonian forest dieback. New Phytol. 187, 694–706 (2010).

    Article  Google Scholar 

  4. 4.

    Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

    Google Scholar 

  5. 5.

    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).

    Article  Google Scholar 

  6. 6.

    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    Article  Google Scholar 

  7. 7.

    Staal, A., Dekker, S. C., Xu, C. & van Nes, E. H. Bistability, spatial interaction, and the distribution of tropical forests and savannahs. Ecosystems 19, 1080–1091 (2016).

    Article  Google Scholar 

  8. 8.

    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  9. 9.

    Gunderson, L. H. Ecological resilience—in theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).

    Article  Google Scholar 

  10. 10.

    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    Article  Google Scholar 

  11. 11.

    Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 041–16,046 (2014).

    Article  Google Scholar 

  12. 12.

    Xu, X. et al. Tree cover shows strong sensitivity to precipitation variability across the global tropics. Glob. Ecol. Biogeogr. 27, 450–460 (2018).

    Article  Google Scholar 

  13. 13.

    Flores, B. M. et al. Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc. Natl Acad. Sci. USA 114, 4442–4446 (2017).

    Article  Google Scholar 

  14. 14.

    Anderegg, W. R. et al. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367–371 (2015).

    Article  Google Scholar 

  15. 15.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    Article  Google Scholar 

  16. 16.

    Holmgren, M., Hirota, M., van Nes, E. H. & Scheffer, M. Effects of interannual climate variability on tropical tree cover. Nat. Clim. Chang 3, 755–758 (2013).

    Article  Google Scholar 

  17. 17.

    Magrin, G. O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1499–1566 (IPCC, Cambridge Univ. Press, 2014).

  18. 18.

    Hansen, M. C. et al. Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact. 7, 1–15 (2003).

    Article  Google Scholar 

  19. 19.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  20. 20.

    Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).

    Article  Google Scholar 

  21. 21.

    Livina, V. N., Kwasniok, F. & Lenton, T. M. Potential analysis reveals changing number of climate states during the last 60 kyr. Clim. Past Discuss. 6, 77–82 (2010).

    Article  Google Scholar 

  22. 22.

    Scheffer, M., Carpenter, S. R., Dakos, V. & van Nes, E. H. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).

    Article  Google Scholar 

  23. 23.

    Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 9, 5 (2004).

    Article  Google Scholar 

  24. 24.

    Menck, P. J., Heitzig, J., Marwan, N. & Kurths, J. How basin stability complements the linear-stability paradigm. Nat. Phys. 9, 89–92 (2013).

    Article  Google Scholar 

  25. 25.

    Engelbrecht, B. M. J. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).

    Article  Google Scholar 

  26. 26.

    Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the neotropics. Ecography 40, 618–629 (2017).

    Article  Google Scholar 

  27. 27.

    Esquivel-Muelbert, A. et al. Biogeographic distributions of neotropical trees reflect their directly measured drought tolerances. Sci. Rep. 7, 1–11 (2017).

    Article  Google Scholar 

  28. 28.

    Poorter, L. & Markesteijn, L. Seedling traits determine drought tolerance of tropical tree species. Biotropica 40, 321–331 (2007).

    Article  Google Scholar 

  29. 29.

    Cosme, L. H. M., Schietti, J., Costa, F. R. C. & Oliveira, R. S. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytol. 215, 113–125 (2017).

    Article  Google Scholar 

  30. 30.

    Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).

    Article  Google Scholar 

  31. 31.

    Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol. 221, 1457–1465 (2019).

    Article  Google Scholar 

  32. 32.

    Walker, B. & Salt, D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World (Island Press, Washington DC, 2012).

  33. 33.

    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538 (2018).

    Article  Google Scholar 

  34. 34.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

  35. 35.

    Anderegg, W. R. L. et al. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc. Natl Acad. Sci. USA 109, 233–237 (2012).

    Article  Google Scholar 

  36. 36.

    Guidão, P., Ruggiero, C., Batalha, M. A. & Pivello, V. R. Soil–vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol. 60, 1–16 (2002).

    Google Scholar 

  37. 37.

    Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6, 1032–1036 (2016).

    Article  Google Scholar 

  38. 38.

    Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 1–9 (2017).

    Article  Google Scholar 

  39. 39.

    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Article  Google Scholar 

  40. 40.

    Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation–atmosphere feedbacks. Nat. Commun. 8, 1–10 (2017).

    Article  Google Scholar 

  41. 41.

    Staver, A. C. & Hansen, M. C. Analysis of stable states in global savannas: is the CART pulling the horse? A comment. Glob. Ecol. Biogeogr. 24, 985–987 (2015).

    Article  Google Scholar 

  42. 42.

    Hanan, N. P., Tredennick, A. T., Prihodko, L., Bucini, G. & Dohn, J. Analysis of stable states in global savannas: is the CART pulling the horse? Glob. Ecol. Biogeogr. 23, 259–263 (2014).

    Article  Google Scholar 

  43. 43.

    Hanan, N. P., Tredennick, A. T., Prihodko, L., Bucini, G. & Dohn, J. Analysis of stable states in global savannas—a response to Saver and Hansen. Glob. Ecol. Biogeogr. 24, 988–989 (2015).

    Article  Google Scholar 

  44. 44.

    Gerard, F. et al. MODIS VCF should not be used to detect discontinuities in tree cover due to binning bias. A comment on Hanan et al. (2014) and Staver and Hansen (2015). Glob. Ecol. Biogeogr. 26, 854–859 (2017).

    Article  Google Scholar 

  45. 45.

    Cobertura e uso da terra 2012 (IBGE, accessed 3 February 2019); ftp://geoftp.ibge.gov.br/informacoes_ambientais/cobertura_e_uso_da_terra/mudancas/vetores/

  46. 46.

    Markham, C. G. Seasonality of precipitation in the United States. Ann. Assoc. Am. Geogr. 60, 593–597 (1970).

    Article  Google Scholar 

  47. 47.

    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Article  Google Scholar 

  48. 48.

    Mitra, C., Kurths, J. & Donner, R. V. An integrative quantifier of multistability in complex systems based on ecological resilience. Sci. Rep. 5, 16196 (2015).

    Article  Google Scholar 

  49. 49.

    Gardiner, C. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, Berlin, 2004).

  50. 50.

    Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—The ISI-MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).

    Article  Google Scholar 

  51. 51.

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

  52. 52.

    Dimiceli, C. et al. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MOD44B.006

Download references

Acknowledgements

We thank S. Lange for providing the global climate model data. We thank E. H. van Nes for the helpful introduction in computing potential landscapes. This paper was developed within the scope of the IRTG 1740/TRP 2015/50122-0, funded by the DFG/FAPESP. C.C. acknowledges the project grant BMBF 01LN1306A. M.H. and R.S.O. acknowledge the project grants Microsoft/FAPESP 2013/50169–1 and 2011/52072-0, as well as Instituto Serrapilheira/Serra-1709–18983. N.B. acknowledges funding by the German Science Foundation (DFG, Reference BO 4455/1–1). R.W. is thankful for support by the Leibniz Association (project DominoES).

Author information

Affiliations

Authors

Contributions

C.C., N.B., M.H. and R.W. conceived the study and prepared the manuscript with contributions from R.S.O. C.C. performed the analyses. All the authors discussed the results and contributed to editing the manuscript.

Corresponding authors

Correspondence to Catrin Ciemer or Ricarda Winkelmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Discussion

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ciemer, C., Boers, N., Hirota, M. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019). https://doi.org/10.1038/s41561-019-0312-z

Download citation

Further reading