Article | Published:

Fully oxygenated water columns over continental shelves before the Great Oxidation Event

Nature Geosciencevolume 12pages186191 (2019) | Download Citation

Abstract

Late Archaean sedimentary rocks contain compelling geochemical evidence for episodic accumulation of dissolved oxygen in the oceans along continental margins before the Great Oxidation Event. However, the extent of this oxygenation remains poorly constrained. Here we present thallium and molybdenum isotope compositions for anoxic organic-rich shales of the 2.5-billion-year-old Mount McRae Shale from Western Australia, which previously yielded geochemical evidence of a transient oxygenation event. During this event, we observe an anticorrelation between thallium and molybdenum isotope data, including two shifts to higher molybdenum and lower thallium isotope compositions. Our data indicate pronounced burial of manganese oxides in sediments elsewhere in the ocean at these times, which requires that the water columns above portions of the ocean floor were fully oxygenated—all the way from the air–sea interface to well below the sediment–water interface. Well-oxygenated continental shelves were probably the most important sites of manganese oxide burial and mass-balance modelling results suggest that fully oxygenated water columns were at least a regional-scale feature of early Earth’s oceans 2.5 billion years ago.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

All data generated during this study are included in the Supplementary Information.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 06 March 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

  2. 2.

    Eigenbrode, J. L. & Freeman, K. H. Late Archean rise of aerobic microbial ecosystems. Proc. Natl Acad. Sci. USA 103, 15759–15764 (2006).

  3. 3.

    Kendall, B. et al. Pervasive oxygenation along late Aarchaean ocean margins. Nat. Geosci. 3, 647–652 (2010).

  4. 4.

    Czaja, A. D. et al. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation. Geochim. Cosmochim. Acta 86, 118–137 (2012).

  5. 5.

    Kendall, B., Brennecka, G. A., Weyer, S. & Anbar, A. D. Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga. Chem. Geol. 362, 105–114 (2013).

  6. 6.

    Stüeken, E. E., Buick, R. & Anbar, A. D. Selenium isotopes support free O2 in the latest Archean. Geology 43, 259–262 (2015).

  7. 7.

    Eickmann, B. et al. Isotopic evidence for oxygenated Mmesoarchaean shallow oceans. Nat. Geosci. 11, 133–138 (2018).

  8. 8.

    Koehler, M. C., Buick, R., Kipp, M. A., Stüeken, E. E. & Zaloumis, J. Transient surface ocean oxygenation recorded in the ~2.66-Ga Jeerinah Formation, Australia. Proc. Natl Acad. Sci. USA 115, 7711–7716 (2006).

  9. 9.

    Kasting, J. F. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. & Klein, C.) 1185–1187 (Cambridge Univ. Press, Cambridge, 1992).

  10. 10.

    Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).

  11. 11.

    Morford, J. L., Emerson, S. R., Breckel, E. J. & Kim, S. H. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochim. Cosmochim. Acta 69, 5021–5032 (2005).

  12. 12.

    Morford, J. L., Martin, W. R. & Carney, C. M. Rhenium geochemical cycling: insights from continental margins. Chem. Geol. 324–-325, 73–86 (2012).

  13. 13.

    Burdige, D. J. The biogeochemistry of manganese and iron reduction in marine sediments. Earth Sci. Rev. 35, 249–284 (1993).

  14. 14.

    Calvert, S. E. & Pedersen, T. F. Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Econ. Geol. 91, 36–47 (1996).

  15. 15.

    Kristensen, E., Kristiansen, K. D. & Jensen, M. H. Temporal behavior of manganese and iron in a sandy coastal sediment exposed to water column anoxia. Estuaries 26, 690–699 (2003).

  16. 16.

    Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).

  17. 17.

    Nielsen, S. G. et al. Thallium isotopes in early diagenetic pyrite—a paleoredox proxy? Geochim. Cosmochim. Acta 75, 6690–6704 (2011).

  18. 18.

    Owens, J. D., Nielsen, S. G., Horner, T. J., Ostrander, C. M. & Peterson, L. C. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial. Geochim. Cosmochim. Acta 213, 291–307 (2017).

  19. 19.

    Raiswell, R. et al. The iron paleoredox proxies: a guide to pitfalls, problems and proper practice. Am. J. Sci. 318, 491–526 (2018).

  20. 20.

    Ostrander, C. M., Owens, J. D. & Nielsen, S. G. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous oceanic anoxic event (OAE-2: ~94 Ma). Sci. Adv. 3, e1701020 (2017).

  21. 21.

    Them, T. R. et al. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. Proc. Natl Acad. Sci. USA 115, 6596–6601 (2018).

  22. 22.

    Nielsen, S. G. et al. Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth Planet. Sci. Lett. 251, 120–133 (2006).

  23. 23.

    Nielsen, S. G. et al. Thallium isotopic composition of the upper continental crust and rivers—an investigation of the continental sources of dissolved marine thallium. Geochim. Cosmochim. Acta 19, 2007–2019 (2005).

  24. 24.

    Nielsen, S. G. et al. Towards an understanding of thallium isotope fractionation during adsorption to manganese oxides. Geochim. Cosmochim. Acta 117, 252–265 (2013).

  25. 25.

    Wasylenki, L. E. et al. The molecular mechanism of Mo isotope fractionation during adsorption to birnessite. Geochim. Cosmochim. Acta 75, 5019–5031 (2011).

  26. 26.

    Nägler, T. F. et al. Proposal for an international molybdenum isotope measurement standard and data representation. Geostand. Geoanal. Res. 39, 149–151 (2014).

  27. 27.

    Willbold, M. & Elliot, T. Molybdenum isotope variations in magmatic rocks. Chem. Geol. 449, 253–268 (2017).

  28. 28.

    Neubert, N., Nägler, T. F. & Böttcher, M. E. Sulfidity controls molybdenum isotope fractionation into euxinic sediments: evidence from the modern Black Sea. Geology 36, 775–778 (2008).

  29. 29.

    Siebert, C. et al. Molybdenum isotope fractionation in soils: influence of redox conditions, organic matter, and atmospheric inputs. Geochim. Cosmochim. Acta 162, 1–24 (2015).

  30. 30.

    Archer, C. & Vance, D. The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nat. Geosci. 1, 597–600 (2008).

  31. 31.

    King, E. K. & Pett-Ridge, J. C. Reassessing the dissolved molybdenum isotopic composition of ocean inputs: the effect of chemical weathering and groundwater. Geology 46, 955–958 (2018).

  32. 32.

    Goldberg, T., Archer, C., Vance, D. & Poulton, S. W. Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochim. Cosmochim. Acta 73, 6502–6516 (2009).

  33. 33.

    Peacock, C. L. & Moon, E. M. Oxidative scavenging of thallium by birnessite: explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. Geochim. Cosmochim. Acta 84, 297–313 (2012).

  34. 34.

    Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).

  35. 35.

    Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007).

  36. 36.

    Garvin, J., Buick, R., Anbar, A. D., Arnold, G. L. & Kaufman, A. J. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323, 1045–1048 (2009).

  37. 37.

    Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D. & Lyons, T. W. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009).

  38. 38.

    Duan, Y. et al. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochim. Cosmochim. Acta 74, 6655–6668 (2010).

  39. 39.

    Kendall, B., Creaser, R. A., Reinhard, C. T., Lyons, T. W. & Anbar, A. D. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean. Sci. Adv. 1, e1500777 (2015).

  40. 40.

    Gregory, D. D. et al. The chemical conditions of the late Archean Hamersley Basin inferred from whole rock and pyrite geochemistry with ∆33S and δ34S isotope analyses. Geochim. Cosmochim. Acta 149, 223–250 (2015).

  41. 41.

    Wille, M. et al. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta 71, 2417–2435 (2007).

  42. 42.

    Algeo, T. J. & Tribovillard, N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chem. Geol. 268, 211–225 (2009).

  43. 43.

    Johnson, J. E. et al. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc. Natl Acad. Sci. USA 110, 11238–11243 (2013).

  44. 44.

    Anbar, A. D. & Holland, H. D. The photochemistry of manganese and the origin of banded iron formations. Geochim. Cosmochim. Acta 56, 2595–2603 (1992).

  45. 45.

    Kendall, B., Dahl, T. W. & Anbar, A. D. Good golly, why Moly? The stable isotope geochemistry of molybdenum. Rev. Mineral. Geochem. 82, 682–732 (2017).

  46. 46.

    Nielsen, S. G., Rehkämper, M. & Prytulak, J. Investigation and application of thallium isotope fractionation. Rev. Mineral. Geochem. 82, 759–798 (2017).

  47. 47.

    Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, Princeton, 1984).

  48. 48.

    Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2374 (2002).

  49. 49.

    De Kock, M. O., Evans, D. A. D. & Beukes, N. J. Validating the existence of Vaalbara in the Neoarchean. Precambr. Res. 174, 145–154 (2009).

  50. 50.

    Madison, A. S., Tebo, B. M., Mucci, A., Sundby, B. & Luther, G. W. III Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 341, 875–878 (2013).

  51. 51.

    Rehkämper, M. & Halliday, A. N. The precise measurement of Tl isotopic compositions by MC-ICPMS: applications to the analysis of geological materials and meteorites. Geochim. Cosmochim. Acta 63, 935–944 (1999).

  52. 52.

    Nielsen, S. G., Rehkämper, M., Baker, J. A. & Halliday, A. N. The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICPMS. Chem. Geol. 204, 109–124 (2004).

  53. 53.

    Siebert, C., Nägler, T. F. & Kramers, J. D. Determination of the molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochem. Geophys. Geosyst. 2, 2000GC000124 (2001).

  54. 54.

    Barling, J., Arnold, G. L. & Anbar, A. D. Natural mass-dependent variations in the isotopic composition of molybdenum. Earth Planet. Sci. Lett. 193, 447–457 (2001).

  55. 55.

    Kendall, B., Creaser, R. A., Gordon, G. W. & Anbar, A. D. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, Mcarthur Basin, northern Australia. Geochim. Cosmochim. Acta 73, 2534–2558 (2009).

  56. 56.

    Goldberg, T. et al. Resolution of inter-laboratory discrepancies in Mo isotope data: an intercalibration. J. Anal. Atom. Spectrom. 28, 724–735 (2013).

Download references

Acknowledgements

We would like to thank W. Zheng and J. Blusztajn for their help with instrumental analysis at Arizona State University and the Woods Hole Oceanographic Institution, respectively. This research was supported financially by the NSF Frontiers in Earth System Dynamics programme (award no. NSF EAR-1338810), the NSF Chemical Oceanography programme (award no. OCE 1434785), the NASA Exobiology programme (award no. NNX16AJ60G), an NSERC Discovery Grant (award no. RGPIN-435930) and the NASA Astrobiology Institute (award no. NNA15BB03A). This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program under grant no. 026257-001. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Affiliations

  1. School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA

    • Chadlin M. Ostrander
    • , Gwyneth W. Gordon
    • , Stephen J. Romaniello
    •  & Ariel D. Anbar
  2. NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

    • Chadlin M. Ostrander
    •  & Sune G. Nielsen
  3. Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

    • Sune G. Nielsen
  4. Department of Earth, Ocean, and Atmospheric Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA

    • Jeremy D. Owens
  5. Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada

    • Brian Kendall
  6. School of Molecular Sciences, Arizona State University, Tempe, AZ, USA

    • Ariel D. Anbar

Authors

  1. Search for Chadlin M. Ostrander in:

  2. Search for Sune G. Nielsen in:

  3. Search for Jeremy D. Owens in:

  4. Search for Brian Kendall in:

  5. Search for Gwyneth W. Gordon in:

  6. Search for Stephen J. Romaniello in:

  7. Search for Ariel D. Anbar in:

Contributions

C.M.O., S.G.N., J.D.O., B.K., and A.D.A. developed the project idea. C.M.O. processed samples and performed Tl and Mo isotope analyses with contributions from S.G.N., J.D.O., B.K., G.W.G. and S.J.R. C.M.O. performed the modelling and wrote the manuscript with contributions from all co-authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Chadlin M. Ostrander.

Supplementary information

  1. Supplementary text and figures

    Supplementary sample information, modelling, Supplementary Figs 1, 2 and Supplementary Tables 1, 2.

  2. Supplementary data

    Trace metal and isotope data for Mt. McRae shale samples.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-019-0309-7