Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bilobate comet morphology and internal structure controlled by shear deformation


Bilobate comets—small icy bodies with two distinct lobes—are a common configuration among comets, but the factors shaping these bodies are largely unknown. Cometary nuclei, the solid centres of comets, erode by ice sublimation when they are sufficiently close to the Sun, but the importance of a comet’s internal structure on its erosion is unclear. Here we present three-dimensional analyses of images from the Rosetta mission to illuminate the process that shaped the Jupiter-family bilobate comet 67P/Churyumov–Gerasimenko over billions of years. We show that the comet’s surface and interior exhibit shear-fracture and fault networks, on spatial scales of tens to hundreds of metres. Fractures propagate up to 500 m below the surface through a mechanically homogeneous material. Through fracture network analysis and stress modelling, we show that shear deformation generates fracture networks that control mechanical surface erosion, particularly in the strongly marked neck trough of 67P/Churyumov–Gerasimenko, exposing its interior. We conclude that shear deformation shapes and structures the surface and interior of bilobate comets, particularly in the outer Solar System where water ice sublimation is negligible.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Fracture pattern on 67P’s southern hemisphere showing fracture interpretations and comparison with typical Earth analogues or equivalents.

(a, b(i), b(ii), c, d(i), d(ii) and e(i)): ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Fig. 2: Fracture length distribution and direction statistics.
Fig. 3: Block diagram revealing 67P’s fractured internal structure and its evolution through increasing mechanical erosion.


Fig. 4: Chronology of the evolution of the shape of 67P (from a primordial or collisional later event), showing the effects of the two complementary erosion processes (mechanical erosion and sublimation erosion).

Data availability

All the images analysed during the current study are available in the ESA-PSA repository ( The data that support the findings of this study are in the Supplementary Information and available from the corresponding author upon reasonable request (


  1. Duncan, M., Levison, H. & Dones, L. in Comets II 193–204 (Univ. Arizona Press, Tucson, 2004).

  2. Sunshine, J. M., Thomas, N., El-Maarry, M. R. & Farnham, T. L. Evidence for geologic processes on comets. J. Geophys. Res. Planets 121, 2194–2210 (2016).

    Article  Google Scholar 

  3. Massironi, M. et al. Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature 526, 402–405 (2015).

    Article  Google Scholar 

  4. Davidsson, B. J. R. et al. The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 592, A63 (2016).

  5. Hirabayashi, M. et al. Fission and reconfiguration of bilobate comets as revealed by 67P/Churyumov-Gerasimenko. Nature 534, 352–355 (2016).

    Article  Google Scholar 

  6. Schwartz, S. R. et al. Catastrophic disruptions as the origin of bilobate comets. Nat. Astron. 2, 379–382 (2018).

    Article  Google Scholar 

  7. Jutzi, M. & Benz, W. Formation of bi-lobed shapes by sub-catastrophic collisions. A late origin of comet 67P’s structure. Astron. Astrophys. 597, A62 (2017).

  8. Keller, H. U. et al. OSIRIS – The scientific camera system onboard Rosetta. Space Sci. Rev. 128, 433–506 (2007).

    Article  Google Scholar 

  9. El-Maarry, M. R. et al. Fractures on comet 67P/Churyumov-Gerasimenko observed by Rosetta/OSIRIS. Geophys. Res. Lett. 42, 5170–5178 (2015).

    Article  Google Scholar 

  10. Thomas, N. et al. The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science 347, aaa0440 (2015).

    Article  Google Scholar 

  11. Auger, A. T. et al. Meter-scale thermal contraction crack polygons on the nucleus of comet 67P/Churyumov-Gerasimenko. Icarus 301, 173–188 (2017).

  12. Attree, N. et al. Thermal fracturing on comets. Astron. Astrophys. 610, A76 (2018).

  13. Lee, J. C. et al. Geomorphological mapping of comet 67P/Churyumov-Gerasimenko’s Southern hemisphere. Mon. Not. R. Astron. Soc. 462, S573–S592 (2016).

    Article  Google Scholar 

  14. Penasa, L. et al. A three dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 469, S741–S754 (2017).

  15. Lyell, C. & Deshayes, G. P. Principles of Geology: Being an Attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation (J. Murray, London, 1830).

  16. Steno, N. De Solido Intra Solidum Naturaliter Contento dissertationis prodromus Vol. 78 (Accademia della Crusca, Florentiae, 1669).

  17. Twiss, R. J. & Moores, E. M. Structural Geology (W. H. Freeman and Company, New York, 1992).

  18. Rao, G. et al. Co-seismic Riedel shear structures produced by the 2010 M w 6.9 Yushu earthquake, central Tibetan Plateau, China. Tectonophysics 507, 86–94 (2011).

    Article  Google Scholar 

  19. Matonti, C., Lamarche, J., Guglielmi, Y. & Marié, L. Structural and petrophysical characterization of mixed conduit/seal fault zones in carbonates: example from the Castellas fault (SE France). J. Struct. Geol. 39, 103–121 (2012).

    Article  Google Scholar 

  20. Peacock, D. C. P., Nixon, C. W., Rotevatn, A., Sanderson, D. J. & Zuluaga, L. F. Glossary of fault and other fracture networks. J. Struct. Geol. 92, 12–29 (2016).

    Article  Google Scholar 

  21. Mukherjee, S. Atlas of Structural Geology (Elsevier Science, Amsterdam, 2015).

  22. Mitchell, T. M. & Faulkner, D. R. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile. J. Struct. Geol. 31, 802–816 (2009).

    Article  Google Scholar 

  23. Soliva, R. & Schultz, R. A. Distributed and localized faulting in extensional settings: insight from the NorthEthiopian Rift–Afar transition area.Tectonics 27, TC2003 (2008).

    Article  Google Scholar 

  24. Cladouhos, T. T. & Marrett, R. Are fault growth and linkage models consistent with power-law distributions of fault lengths? J. Struct. Geol. 18, 281–293 (1996).

    Article  Google Scholar 

  25. Preusker, F. et al. The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 607, L1 (2017).

    Article  Google Scholar 

  26. Riedel, W. Zur Mechanik Geologischer Brucherscheinunger.Zentralbl. Mineral. Geol. Paläontol. 8, 354–368 (1929).

    Google Scholar 

  27. Bartlett, W. L., Friedman, M. & Logan, J. M. Experimental folding and faulting of rocks under confining pressure. 9. Wrench faults in limestone layers. Tectonophysics 79, 255–277 (1981).

    Article  Google Scholar 

  28. Ahlgren, S. G. The nucleation and evolution of Riedel shear zones as deformation bands in porous sandstone. J. Struct. Geol. 23, 1203–1214 (2001).

    Article  Google Scholar 

  29. Groussin, O. et al. Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astron. Astrophys. 583, A32 (2015).

  30. Vincent, J. B. et al. Constraints on cometary surface evolution derived from a statistical analysis of 67P’s topography. Mon. Not. R. Astron. Soc. 469, S329–S338 (2017).

    Article  Google Scholar 

  31. Hatton, C. G., Main, I. G. & Meredith, P. G. Non-universal scaling of fracture length and opening displacement. Nature 367, 160–162 (1994).

    Article  Google Scholar 

  32. Hviid, S. et al. A creaking and cracking comet. In AAS/Division for Planetary Sciences Meeting Abstracts Vol. 48, 211.05 (AAS, 2016).

  33. Attree, N. et al. Tensile strength of 67P/Churyumov–Gerasimenko nucleus material from overhangs. Astron. Astrophys. 611, A33 (2018).

  34. Basilevsky, A. T. et al. Estimating the strength of the nucleus material of comet 67P Churyumov–Gerasimenko. Solar Syst. Res. 50, 225–234 (2016).

    Article  Google Scholar 

  35. Hooker, J. N., Laubach, S. E. & Marrett, R. Fracture-aperture size—frequency, spatial distribution, and growth processes in strata-bounded and non-strata-bounded fractures, Cambrian Mesón Group, NW Argentina. J. Struct. Geol. 54, 54–71 (2013).

    Article  Google Scholar 

  36. Durda, D. D. & Stern, S. A. Collision rates in the present-day Kuiper Belt and Centaur regions: applications to surface activation and modification on comets, Kuiper Belt objects, Centaurs, and Pluto–Charon. Icarus 145, 220–229 (2000).

    Article  Google Scholar 

  37. Weissman, P. R. & Levison, H. F. in The Population of the Trans-Neptunian Region: the Pluto-Charon Environment 559 (Univ. Arizona Press, Tucson, 1997).

  38. Skorov, Y. V., Rezac, L., Hartogh, P., Bazilevsky, A. T. & Keller, H. U. A model of short-lived outbursts on the 67P from fractured terrains. Astron Astrophys. 593, A76 (2016).

    Article  Google Scholar 

  39. Pajola, M. et al. The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nat. Astron. 1, 0092 (2017).

    Article  Google Scholar 

  40. Lai, I. L. et al. Gas outflow and dust transport of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 462, S533–S546 (2016).

    Article  Google Scholar 

  41. Keller, H. U. et al. Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 583, A34 (2015).

    Article  Google Scholar 

  42. Boehnhardt, H. in Comets II 301–316 (Univ. Arizona Press, Tucson, 2004).

  43. Sekanina, Z., Larson, S. M., Hainaut, O., Smette, A. & West, R. M. Major outburst of periodic comet Halley at a heliocentric distance of 14 AU. Astron. Astrophys. 263, 367–386 (1992).

    Google Scholar 

  44. Gaskell, R. W. et al. Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 43, 1049–1061 (2008).

    Article  Google Scholar 

  45. Bonnet, E. et al. Scaling of fracture systems in geological media. Rev. Geophys. 39, 347–383 (2001).

    Article  Google Scholar 

Download references


OSIRIS was built by a consortium of the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany; the CISAS University of Padova, Italy; the Laboratoire d’Astrophysique de Marseille, France; the Instituto de Astrofisica de Andalucia, CSIC, Granada, Spain; the Research and Scientific Support Department of the ESA, Noordwijk, Netherlands; the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain; the Universidad Politéchnica de Madrid, Spain; the Department of Physics and Astronomy of Uppsala University, Sweden; and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany. The support of the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain (MEC), Sweden (SNSB), and the ESA Technical Directorate is gratefully acknowledged. We thank the Rosetta Science Operations Centre and the Rosetta Mission Operations Centre for the successful rendezvous with comet 67 P/Churyumov–Gerasimenko. We also thank Emerson E&P Software, Emerson Automation Solutions, for providing SKUA-GOCAD licenses in the scope of the Emerson Grant Program, V. A. La Bruna for the interesting Structural Geology discussions related to this study, and Y. Guglielmi for his advices on the submission.

Author information

Authors and Affiliations



C.M. led this study, mapped the lineaments, performed geological interpretation and wrote most of the manuscript. N.A. performed the 3D projection of the lineaments as well as the statistical calculations and interpretations, and participated in the manuscript writing. O.G. contributed significantly to the interpretations and to the manuscript writing. L.J. provided local and global 3D models and developed tool for images selection and data projection. S.V. contributed to the 3D statistical analysis and data importing to the Gocad software. S.F.H. provided the 3D stress model for 67P. S.B. contributed to improved design of the study, interpretations and manuscript. D.N. contributed to the local and global 3D shape model creation. A.-T.A. contributed to the image selection and geological interpretation. P.L. provided the stereo anaglyph images used for interpretation. H.S., G.N., R.R., D.K. and B.D. are the lead scientists of the OSIRIS project. The other authors are all co-investigators who built and ran this instrument and made the observations possible, and associates and assistants who participated in the study.

Corresponding author

Correspondence to C. Matonti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures, Supplementary Discussion

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matonti, C., Attree, N., Groussin, O. et al. Bilobate comet morphology and internal structure controlled by shear deformation. Nat. Geosci. 12, 157–162 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing