Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mode of slip and crust–mantle interaction at oceanic transform faults

Abstract

Oceanic transform faults, connecting offset mid-ocean spreading centres, rupture quasi-periodically in earthquakes up to about magnitude M 7.0 that are often preceded by foreshocks. In addition to seismic slip, a large portion of slip takes place as aseismic creep, which likely influences initiation of large earthquakes. Although oceanic transform faults are one of the major types of plate boundaries, the exact mode of slip and interaction between the seismic and aseismic motion remains unclear. Here we present a detailed model of the mode of slip at oceanic transform faults based on data acquired from a recent temporary deployment of ocean-bottom seismometers at the Blanco Transform Fault and existing regional and teleseismic observations. In the model, the crustal part of the fault is brittle and fully seismically coupled, while the fault in the mantle, shallower than the depth of the 600 °C isotherm, creeps partially and episodically. The creep activates small asperities in the mantle that produce seismic swarms. Both mantle and the crustal zones release most of the plate-motion strain during large-magnitude earthquakes. Large earthquakes appear to be preceded by a brief episode of shallow mantle creep, accompanied by seismic swarms, which explains the observation of foreshocks and shows that mantle creep likely influences initiation of large seismic events.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Bathymetric map of the BR with locations of earthquake epicentres and OBS stations.
Fig. 2: Seismicity of the BR.
Fig. 3: Mantle swarms versus crustal aftershock sequences.
Fig. 4: Mode of slip of the BR transform fault.

Data availability

The OBS dataset is archived at the IRIS Data Management System (http://www.iris.edu). X9 is the network code for the Plate Boundary Evolution and Physics at an Oceanic Transform Fault System project32; 7D is the network code for the Cascadia Initiative Community Experiment – OBS component data33. Raw bathymetry data, used in Fig. 1 and Supplementary Fig. 1, are available from the authors.

References

  1. 1.

    Braunmiller, J. & Nábělek, J. Segmentation of the Blanco Transform Fault Zone from earthquake analysis: complex tectonics of an oceanic transform fault. J. Geophys. Res. Solid Earth 113, B07108 (2008).

    Article  Google Scholar 

  2. 2.

    Embley, R. W. & Wilson, D. S. Morphology of the Blanco Transform Fault Zone-NE Pacific: implications for its tectonic evolution. Mar. Geophys. Res. 14, 25–45 (1992).

    Article  Google Scholar 

  3. 3.

    Boettcher, M. S. & McGuire, J. J. Scaling relations for seismic cycles on mid-ocean ridge transform faults. Geophys. Res. Lett. 36, L21301 (2009).

    Article  Google Scholar 

  4. 4.

    McGuire, J. J. et al. Variations in earthquake rupture properties along the Gofar transform fault, East Pacific Rise. Nat. Geosci. 5, 336–341 (2012).

    Article  Google Scholar 

  5. 5.

    Roland, E., Behn, M. D. & Hirth, G. Thermal‐mechanical behavior of oceanic transform faults: implications for the spatial distribution of seismicity. Geochem. Geophys. Geosyst. 11, Q07001 (2010).

    Article  Google Scholar 

  6. 6.

    Boettcher, M. S., Hirth, G. & Evans, B. Olivine friction at the base of oceanic seismogenic zones. J. Geophys. Res. Solid Earth 112, B01205 (2007).

    Article  Google Scholar 

  7. 7.

    Lohman, R. B. & McGuire, J. J. Earthquake swarms driven by aseismic creep in the Salton Trough, California. J. Geophys. Res. Solid Earth 112, B04405 (2007).

    Article  Google Scholar 

  8. 8.

    Linde, A. T., Gladwin, M. T., Johnston, M. J. S., Gwyther, R. L. & Bilham, R. G. A slow earthquake sequence on the San Andreas fault. Nature 383, 65–68 (1996).

    Article  Google Scholar 

  9. 9.

    Roland, E. & McGuire, J. J. Earthquake swarms on transform faults. Geophys. J. Int. 178, 1677–1690 (2009).

    Article  Google Scholar 

  10. 10.

    Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  11. 11.

    Francis, T. Serpentinization faults and their role in the tectonics of slow spreading ridges. J. Geophys. Res. Solid Earth 86, 11616–11622 (1981).

    Article  Google Scholar 

  12. 12.

    Kohli, A. H., Goldsby, D. L., Hirth, G. & Tullis, T. Flash weakening of serpentinite at near‐seismic slip rates. J. Geophys. Res. Solid Earth 116, B03202 (2011).

    Article  Google Scholar 

  13. 13.

    Reinen, L. A. Seismic and aseismic slip indicators in serpentinite gouge. Geology 28, 135–138 (2000).

    Article  Google Scholar 

  14. 14.

    Guillot, S., Schwartz, S., Reynard, B., Agard, P. & Prigent, C. Tectonic significance of serpentinites. Tectonophysics 646, 1–19 (2015).

    Article  Google Scholar 

  15. 15.

    Dziak, R. P. et al. Recent tectonics of the Blanco Ridge, eastern Blanco Transform Fault Zone. Mar. Geophys. Res. 21, 423–450 (2000).

    Article  Google Scholar 

  16. 16.

    Boettcher, M. S. & Jordan, T. H. Earthquake scaling relations for mid‐ocean ridge transform faults. J. Geophys. Res. Solid Earth 109, B12302 (2004).

    Article  Google Scholar 

  17. 17.

    Okal, E. A. & Langenhorst, A. R. Seismic properties of the Eltanin Transform System, South Pacific. Phys. Earth Planet. Interiors 119, 185–208 (2000).

    Article  Google Scholar 

  18. 18.

    Bird, P., Kagan, Y. Y. & Jackson, D. D. in Plate Boundary Zones (eds Stein, S. S. & Freymueller, J. T.) 203–218 (AGU, Washington DC, 2002).

  19. 19.

    McGuire, J. J. Seismic cycles and earthquake predictability on East Pacific Rise transform faults. Bull. Seismol. Soc. Am. 98, 1067–1084 (2008).

    Article  Google Scholar 

  20. 20.

    Sykes, L. R. & Ekström, G. Earthquakes along Eltanin transform system, SE Pacific Ocean: fault segments characterized by strong and poor seismic coupling and implications for long-term earthquake prediction. Geophys. J. Int. 188, 421–434 (2012).

    Article  Google Scholar 

  21. 21.

    McGuire, J. J. Immediate foreshock sequences of oceanic transform earthquakes on the East Pacific Rise. Bull. Seismol. Soc. Am. 93, 948–952 (2003).

    Article  Google Scholar 

  22. 22.

    McGuire, J. J., Boettcher, M. S. & Jordan, T. H. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults. Nature 434, 457–461 (2005).

    Article  Google Scholar 

  23. 23.

    McGuire, J. J., Ihmle, P. F. & Jordan, T. H. Time-domain observations of a slow precursor to the 1994 Romanche transform earthquake. Science 274, 82–85 (1996).

    Article  Google Scholar 

  24. 24.

    Abercrombie, R. E. & Ekström, G. Earthquake slip on oceanic transform faults. Nature 410, 74–77 (2001).

    Article  Google Scholar 

  25. 25.

    Wilson, D. S. Confidence intervals for motion and deformation of the Juan de Fuca Plate. J. Geophys. Res. Solid Earth 98, 16053–16071 (1993).

    Article  Google Scholar 

  26. 26.

    DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).

    Article  Google Scholar 

  27. 27.

    Pavlis, G. L., Vernon, F., Harvey, D. & Quinlan, D. The generalized earthquake-location (GENLOC) package: an earthquake-location library. Comput. Geosci. 30, 1079–1091 (2004).

    Article  Google Scholar 

  28. 28.

    Waldhauser, F. & Ellsworth, W. L. A double-difference earthquake location algorithm: method and application to the northern Hayward Fault, California. Bull. Seismol. Soc. Am. 90, 1353–1368 (2000).

    Article  Google Scholar 

  29. 29.

    De Rubeis, V., Loreto, V., Pietronero, L. & Tosi, P. in Modelling Critical and Catastrophic Phenomena in Geoscience (eds Bhattacharyya, P.& Chakrabarti, B. K.) 259–279 (Springer, Berlin Heidelberg, 2006).

  30. 30.

    Brune, J. N. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75, 4997–5009 (1970).

    Article  Google Scholar 

  31. 31.

    Hanks, T. C. & Kanamori, H. A moment magnitude scale. J. Geophys. Res. Solid Earth 84, 2348–2350 (1979).

    Article  Google Scholar 

  32. 32.

    Nábělek, J., Braunmiller, J. Plate boundary evolution and physics at an oceanic transform fault system. International Federation of Digital Seismograph Networks https://doi.org/10.7914/SN/X9_2012 (2012).

  33. 33.

    IRIS OBSIP Cascadia Initiative Community Experiment - OBS component. International Federation of Digital Seismograph Networks https://doi.org/10.7914/SN/7D_2011 (2011).

Download references

Acknowledgements

The seismic stations for the project were provided by the Ocean Bottom Seismograph Instrument Pool (http://www.obsip.org), funded by the National Science Foundation (NSF). This research was supported by NSF grants OCE-1031858, OCE-1131767 and OCE-1737073. We thank the crews of RV Melville and RV Oceanus, OBSIP technicians and volunteers who contributed to data collection.

Author information

Affiliations

Authors

Contributions

J.L.N. and J.B. designed the study and collected the dataset. V.M.K. and J.L.N. created the seismicity catalogue. V.M.K. conducted the data analysis. All authors discussed results and contributed to the manuscript.

Corresponding authors

Correspondence to Václav M. Kuna or John L. Nábělek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures, Supplementary Tables.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuna, V.M., Nábělek, J.L. & Braunmiller, J. Mode of slip and crust–mantle interaction at oceanic transform faults. Nature Geosci 12, 138–142 (2019). https://doi.org/10.1038/s41561-018-0287-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing