Glaciers in High Mountain Asia have experienced heterogeneous rates of loss since the 1970s. Yet, the associated changes in ice flow that lead to mass redistribution and modify the glacier sensitivity to climate are poorly constrained. Here we present observations of changes in ice flow for all glaciers in High Mountain Asia over the period 2000–2017, based on one million pairs of optical satellite images. Trend analysis reveals that in 9 of the 11 surveyed regions, glaciers show sustained slowdown concomitant with ice thinning. In contrast, the stable or thickening glaciers of the Karakoram and West Kunlun regions experience slightly accelerated glacier flow. Up to 94% of the variability in velocity change between regions can be explained by changes in gravitational driving stress, which in turn is largely controlled by changes in ice thickness. We conclude that, despite the complexities of individual glacier behaviour, decadal and regional changes in ice flow are largely insensitive to changes in conditions at the bed of the glacier and can be well estimated from ice thickness change and slope alone.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The mean and annual velocity fields will be made publicly available in early 2019 as part of the NASA MEaSUREs - ITS_LIVE project and will be distributed though the National Snow and Ice Data centre. Data can be made available immediately through request to the authors.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Zemp, M. et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 61, 745–762 (2015).

  2. 2.

    Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

  3. 3.

    Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668–673 (2017).

  4. 4.

    Kääb, A., Treichler, D., Nuth, C. & Berthier, E. Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 9, 557–564 (2015).

  5. 5.

    Gardelle, J., Berthier, E., Arnaud, Y. & Kääb, A. Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere 7, 1263–1286 (2013).

  6. 6.

    Zhou, Y., Li, Z., Li, J., Zhao, R. & Ding, X. Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sens. Environ. 210, 96–112 (2018).

  7. 7.

    Heid, T. & Kääb, A. Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere 6, 467–478 (2012).

  8. 8.

    Radić, V. et al. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dyn. 42, 37–58 (2014).

  9. 9.

    Marzeion, B., Jarosch, A. H. & Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6, 1295–1322 (2012).

  10. 10.

    Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. 3, 54 (2015).

  11. 11.

    Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

  12. 12.

    Clarke, G. K. C., Jarosch, A. H., Anslow, F. S., Radić, V. & Menounos, B. Projected deglaciation of western Canada in the twenty-first century. Nat. Geosci. 8, 372–377 (2015).

  13. 13.

    Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549, 257–260 (2017).

  14. 14.

    Immerzeel, W. W., Beek, L. P. Hv, Konz, M., Shrestha, A. B. & Bierkens, M. F. P. Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim. Change 110, 721–736 (2012).

  15. 15.

    Shea, J. M., Immerzeel, W. W., Wagnon, P., Vincent, C. & Bajracharya, S. Modelling glacier change in the Everest region, Nepal Himalaya. Cryosphere 9, 1105–1128 (2015).

  16. 16.

    Azam, M. F. et al. Review of the status and mass changes of Himalayan–Karakoram glaciers. J. Glaciol. 64, 61–74 (2018).

  17. 17.

    Span, N. & Kuhn, M. Simulating annual glacier flow with a linear reservoir model. J. Geophys. Res. 108, 4313 (2003).

  18. 18.

    Vincent, C., Soruco, A., Six, D. & Le Meur, E. Glacier thickening and decay analysis from 50 years of glaciological observations performed on Glacier d’Argentière, Mont Blanc area, France. Ann. Glaciol. 50, 73–79 (2009).

  19. 19.

    Quincey, D. J., Luckman, A. & Benn, D. Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking. J. Glaciol. 55, 596–606 (2009).

  20. 20.

    Azam, M. F. et al. From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri Glacier, western Himalaya, India. J. Glaciol. 58, 315–324 (2012).

  21. 21.

    Sugiyama, S., Fukui, K., Fujita, K., Tone, K. & Yamaguchi, S. Changes in ice thickness and flow velocity of Yala Glacier, Langtang Himal, Nepal, from 1982 to 2009. Ann. Glaciol. 54, 157–162 (2013).

  22. 22.

    Neckel, N., Loibl, D. & Rankl, M. Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet. Earth Planet. Sci. Lett. 464, 95–102 (2017).

  23. 23.

    Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018).

  24. 24.

    Dehecq, A., Gourmelen, N. & Trouve, E. Deriving large-scale glacier velocities from a complete satellite archive: application to the Pamir–Karakoram–Himalaya. Remote Sens. Environ. 162, 55–66 (2015).

  25. 25.

    Pfeffer, W. T. et al. The randolph glacier inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537 (2014).

  26. 26.

    Sevestre, H. & Benn, D. I. Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging. J. Glaciol. 61, 646–662 (2015).

  27. 27.

    Wang, Q., Yi, S. & Sun, W. Consistent interannual changes in glacier mass balance and their relationship with climate variation on the periphery of the Tibetan Plateau. Geophys. J. Int. 214, 573–582 (2018).

  28. 28.

    Vincent, C. et al. Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. Cryosphere 7, 569–582 (2013).

  29. 29.

    Mukherjee, K., Bhattacharya, A., Pieczonka, T., Ghosh, S. & Bolch, T. Glacier mass budget and climate reanalysis data indicate a climatic shift around 2000 in Lahaul–Spiti, western Himalaya. Clim. Change 148, 219–233 (2018).

  30. 30.

    Sakai, A. & Fujita, K. Contrasting glacier responses to recent climate change in high-mountain Asia. Sci. Rep. 7, 13717 (2017).

  31. 31.

    Forsythe, N., Fowler, H. J., Li, X.-F., Blenkinsop, S. & Pritchard, D. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Change 7, 664–670 (2017).

  32. 32.

    Cuffey, K. M. & Paterson, W. S. B. The Physics of Glaciers 4th edn (Elsevier, Burlington, 2010).

  33. 33.

    Weertman, J. On the sliding of glaciers. J. Glaciol. 3, 33–38 (1957).

  34. 34.

    Bindschadler, R. The importance of pressurized subglacial water in separation and sliding at the glacier bed. J. Glaciol. 29, 3–19 (1983).

  35. 35.

    Huss, M. & Farinotti, D. Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res. 117, F04010 (2012).

  36. 36.

    Farinotti, D. et al. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. Cryosphere 11, 949–970 (2017).

  37. 37.

    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

  38. 38.

    Rankl, M., Kienholz, C. & Braun, M. Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere 8, 977–989 (2014).

  39. 39.

    Mukherjee, K. et al. Surge-type glaciers in the Tien Shan (Central Asia). Arct. Antarct. Alp. Res. 49, 147–171 (2017).

  40. 40.

    Vincent, C. & Moreau, L. Sliding velocity fluctuations and subglacial hydrology over the last two decades on Argentière glacier, Mont Blanc area. J. Glaciol. 62, 805–815 (2016).

  41. 41.

    Nienow, P. W. et al. Hydrological controls on diurnal ice flow variability in valley glaciers. J. Geophys. Res. 110, F04002 (2005).

  42. 42.

    Copland, L., Sharp, M. J., Nienow, P. & Bingham, R. G. The distribution of basal motion beneath a High Arctic polythermal glacier. J. Glaciol. 49, 407–414 (2003).

  43. 43.

    Kääb, A. Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens. Environ. 94, 463–474 (2005).

  44. 44.

    Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A 461, 609–627 (2005).

  45. 45.

    Scherler, D., Leprince, S. & Strecker, M. R. Glacier-surface velocities in alpine terrain from optical satellite imagery—accuracy improvement and quality assessment. Remote Sens. Environ. 112, 3806–3819 (2008).

  46. 46.

    Stein, A. N., Huertas, A. & Matthies, L. Attenuating stereo pixel-locking via affine window adaptation. In Proc. IEEE International Conference on Robotics and Automation ICRA 2006 914–921 (IEEE, 2006).

  47. 47.

    Tedstone, A. J. et al. Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming. Nature 526, 692–695 (2015).

  48. 48.

    Mouginot, J. & Rignot, E. Ice motion of the Patagonian Icefields of South America: 1984–2014. Geophys. Res. Lett. 42, 1441–1449 (2015).

  49. 49.

    Gudbjartsson, H. & Patz, S. The Rician distribution of noisy MRI data. Magn. Reson. Med. 34, 910–914 (1995).

  50. 50.

    MacAyeal, D. R. Large-scale ice flow over a viscous basal sediment: theory and application to Ice Stream B, Antarctica. J. Geophys. Res. 94, 4071–4087 (1989).

  51. 51.

    Glen, J. W. The creep of polycrystalline ice. Proc. R. Soc. A 228, 519–538 (1955).

  52. 52.

    Kienholz, C., Rich, J. L., Arendt, A. A. & Hock, R. A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. Cryosphere 8, 503–519 (2014).

  53. 53.

    Kamb, B. & Echelmeyer, K. A. Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope. J. Glaciol. 32, 267–284 (1986).

Download references


We thank M. Huss for providing the thickness and centre flow line data, J. Gardelle, T. Bolch, M. Rankl and H. Sevestre for providing data from their surge-inventory as well as glacier and basin outlines. We thank A. Rowan for comments and suggestions that greatly improved the quality of the paper. Initial research was conducted during A.D.’s graduate programme, with a doctoral fellowship from the Centre National d’Etude Spatial (CNES) and from the Savoie region. N.G. and A.D. were supported by funding from the European Space Agency Dragon 3 programme. E.B. acknowledges support from the French Space Agency (CNES). A.S.G. and A.D. were supported by funding from the NASA Cryosphere and MEaSUREs Programs and research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Author information


  1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

    • Amaury Dehecq
    •  & Alex S. Gardner
  2. Université Savoie Mont Blanc, LISTIC, Annecy, France

    • Amaury Dehecq
    •  & Emmanuel Trouvé
  3. School of GeoSciences, University of Edinburgh, Edinburgh, UK

    • Amaury Dehecq
    • , Noel Gourmelen
    • , Daniel Goldberg
    •  & Peter W. Nienow
  4. IPGS UMR 7516, Université de Strasbourg, CNRS, Strasbourg, France

    • Noel Gourmelen
  5. Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France

    • Fanny Brun
    • , Christian Vincent
    •  & Patrick Wagnon
  6. LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France

    • Fanny Brun
    •  & Etienne Berthier


  1. Search for Amaury Dehecq in:

  2. Search for Noel Gourmelen in:

  3. Search for Alex S. Gardner in:

  4. Search for Fanny Brun in:

  5. Search for Daniel Goldberg in:

  6. Search for Peter W. Nienow in:

  7. Search for Etienne Berthier in:

  8. Search for Christian Vincent in:

  9. Search for Patrick Wagnon in:

  10. Search for Emmanuel Trouvé in:


A.D., N.G. and A.S.G. designed the study. A.S.G. generated the velocity fields. A.D. conducted the analysis with A.S.G and N.G. providing input. A.D. developed the model with D.G. and P.W.N. providing input. F.B. provided the elevation change data. All authors interpreted the results. A.D. led the writing of the paper and all co-authors contributed to it.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Amaury Dehecq.

Supplementary information

  1. Supplementary Materials

    Supplementary Discussion and Supplementary Figures.

  2. Supplementary Data Set

    List of surging glaciers.

About this article

Publication history