Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent global decline in endorheic basin water storages

A Publisher Correction to this article was published on 05 February 2019

This article has been updated


Endorheic (hydrologically landlocked) basins spatially concur with arid/semi-arid climates. Given limited precipitation but high potential evaporation, their water storage is vulnerable to subtle flux perturbations, which are exacerbated by global warming and human activities. Increasing regional evidence suggests a probably recent net decline in endorheic water storage, but this remains unquantified at a global scale. By integrating satellite observations and hydrological modelling, we reveal that during 2002–2016 the global endorheic system experienced a widespread water loss of about 106.3 Gt yr−1, attributed to comparable losses in surface water, soil moisture and groundwater. This decadal decline, disparate from water storage fluctuations in exorheic basins, appears less sensitive to El Niño–Southern Oscillation-driven climate variability, which implies a possible response to longer-term climate conditions and human water management. In the mass-conserved hydrosphere, such an endorheic water loss not only exacerbates local water stress, but also imposes excess water on exorheic basins, leading to a potential sea level rise that matches the contribution of nearly half of the land glacier retreat (excluding Greenland and Antarctica). Given these dual ramifications, we suggest the necessity for long-term monitoring of water storage variation in the global endorheic system and the inclusion of its net contribution to future sea level budgeting.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: TWS changes within global endorheic and exorheic basins from GRACE observations, April 2002 to March 2016.
Fig. 2: Link between TWS anomalies and ENSO.
Fig. 3: Endorheic TWS changes in different geographic zones.
Fig. 4: Endorheic net TWS changes partitioned into contributions of different hydrological storages.

Code availability

All analytical codes generated in this paper are available from the corresponding author upon request.

Data availability

Calculated water storage changes in global endorheic regions are distributed through PANGAEA ( Storage changes in major lakes and reservoirs are available upon reasonable request to the corresponding author. Glacier mass change data are available through Nature Geoscience article

Change history

  • 05 February 2019

    In the version of this Article originally published, in the section ‘Defining endorheic regions’ in Methods, the sentence starting “These watersheds were aggregated…” contained the phrase “(~100,000 thousand km2)”; this should have read (~100,000 km2) and has now been amended.


  1. 1.

    Wada, Y. et al. Global monthly water stress: 2. Water demand and severity of water stress. Water Resour. Res. 47, W07518 (2011).

    Article  Google Scholar 

  2. 2.

    Hammer, U. T. Saline Lake Ecosystems of the World (Dr W. Junk, Dordrecht, 1986).

  3. 3.

    Dai, A. G. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Article  Google Scholar 

  4. 4.

    Reager, J. T. et al. A decade of sea level rise slowed by climate-driven hydrology. Science 351, 699–703 (2016).

    Article  Google Scholar 

  5. 5.

    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    Article  Google Scholar 

  6. 6.

    Wada, Y., van Beek, L. P. H., Wanders, N. & Bierkens, M. F. P. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 8, 034036 (2013).

    Article  Google Scholar 

  7. 7.

    Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015).

    Article  Google Scholar 

  8. 8.

    Wurtsbaugh, W. A. et al. Decline of the world’s saline lakes. Nat. Geosci. 10, 816–821 (2017).

    Article  Google Scholar 

  9. 9.

    Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    Article  Google Scholar 

  10. 10.

    Jacob, T., Wahr, J., Pfeffer, W. T. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).

    Article  Google Scholar 

  11. 11.

    Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668–673 (2017).

    Article  Google Scholar 

  12. 12.

    Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    Article  Google Scholar 

  13. 13.

    Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32, 585–602 (2011).

    Article  Google Scholar 

  14. 14.

    Cazenave, A. et al. The rate of sea-level rise. Nat. Clim. Change 4, 358–361 (2014).

    Article  Google Scholar 

  15. 15.

    Dieng, H. B., Cazenave, A., Meyssignac, B. & Ablain, M. New estimate of the current rate of sea level rise from a sea level budget approach. Geophys. Res. Lett. 44, 3744–3751 (2017).

    Article  Google Scholar 

  16. 16.

    AVISO Mean Sea Level Product and Image Interactive Selection (Centre National d’études Spatiales); (accessed 10 April 2018).

  17. 17.

    Sahagian, D. L., Schwartz, F. W. & Jacobs, D. K. Direct anthropogenic contributions to sea-level rise in the 20th century. Nature 367, 54–57 (1994).

    Article  Google Scholar 

  18. 18.

    Vörösmarty, C. J. & Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50, 753–765 (2000).

    Article  Google Scholar 

  19. 19.

    Milly, P. C. D. et al. in Understanding Sea-Level Rise and Variability (eds Church J. A. et al.) 226–255 (Wiley-Blackwell, Chichester, 2010).

  20. 20.

    Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).

    Article  Google Scholar 

  21. 21.

    Wada, Y. et al. Recent changes in land water storage and its contribution to sea level variations. Surv. Geophys. 38, 131–152 (2017).

    Article  Google Scholar 

  22. 22.

    Beni, A. N. et al. Caspian sea-level changes during the last millennium: historical and geological evidence from the south Caspian Sea. Clim. Past 9, 1645–1665 (2013).

    Article  Google Scholar 

  23. 23.

    Sahagian, D. Global physical effects of anthropogenic hydrological alterations: sea level and water redistribution. Global Planet. Change 25, 39–48 (2000).

    Article  Google Scholar 

  24. 24.

    Famiglietti, J. S. Remote sensing of terrestrial water storage, soil moisture and surface waters. Geophys. Monogr. Ser. 19, 197–207 (2004).

    Google Scholar 

  25. 25.

    Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).

    Article  Google Scholar 

  26. 26.

    Rowlands, D. D. et al. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett. 32, L04310 (2005).

    Article  Google Scholar 

  27. 27.

    Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

    Article  Google Scholar 

  28. 28.

    Wada, Y. et al. Fate of water pumped from underground and contributions to sea-level rise. Nat. Clim. Change 6, 777–780 (2016).

    Article  Google Scholar 

  29. 29.

    Zhang, G. Q. et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basins. Geophys. Res. Lett. 44, 5550–5560 (2017).

    Article  Google Scholar 

  30. 30.

    Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    Article  Google Scholar 

  31. 31.

    Zou, Z. et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl Acad. Sci. USA 115, 3810–3815 (2018).

    Article  Google Scholar 

  32. 32.

    Yao, F. et al. Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium. Environ. Res. Lett. 13, 064011 (2018).

    Article  Google Scholar 

  33. 33.

    van Dijk, A. I. J. M. et al. The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).

    Article  Google Scholar 

  34. 34.

    Fasullo, J. T., Boening, C., Landerer, F. W. & Nerem, R. S. Australia’s unique influence on global sea level in 2010–2011. Geophys. Res. Lett. 40, 4368–4373 (2013).

    Article  Google Scholar 

  35. 35.

    Ozyavas, A., Khan, S. D. & Casey, J. F. A possible connection of Caspian Sea level fluctuations with meteorological factors and seismicity. Earth Planet. Sci. Lett. 299, 150–158 (2010).

    Article  Google Scholar 

  36. 36.

    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

    Article  Google Scholar 

  37. 37.

    Song, C. Q., Huang, B., Richards, K., Ke, L. H. & Phan, V. H. Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes? Water Resour. Res. 50, 3170–3186 (2014).

    Article  Google Scholar 

  38. 38.

    Walvoord, M. A., Phillips, F. M., Tyler, S. W. & Hartsough, P. C. Deep arid system hydrodynamics—2. Application to paleohydrologic reconstruction using vadose zone profiles from the northern Mojave Desert. Water Resour. Res. 38, 1291 (2002).

    Google Scholar 

  39. 39.

    Barnum, D. A., Bradley, T., Cohen, M., Wilcox, B. & Yanega, G. State of the Salton Sea: A Science and Monitoring Meeting of Scientists for the Salton Sea Open-file report 2017-1005 (US Department of the Interior and US Geological Survey, 2017).

  40. 40.

    Revollo, M. M. Management issues in the Lake Titicaca and Lake Poopo system: importance of developing a water budget. Lakes Reserv. Res. Manag. 6, 225–229 (2001).

    Article  Google Scholar 

  41. 41.

    Calizaya, A., Meixner, O., Bengtsson, L. & Berndtsson, R. Multi-criteria decision analysis (MCDA) for integrated water resources management (IWRM) in the Lake Poopo Basin, Bolivia. Water Res. Manag. 24, 2267–2289 (2010).

    Article  Google Scholar 

  42. 42.

    Dai, A., Qian, T. T., Trenberth, K. E. & Milliman, J. D. Changes in continental freshwater discharge from 1948 to 2004. J. Climate 22, 2773–2792 (2009).

    Article  Google Scholar 

  43. 43.

    Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrol. Earth Syst. Sci. 15, 3785–3808 (2011).

    Article  Google Scholar 

  44. 44.

    Chen, J. L. et al. Long-term Caspian Sea level change. Geophys. Res. Lett. 44, 6993–7001 (2017).

    Article  Google Scholar 

  45. 45.

    Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dynam. 43, 2607–2627 (2014).

    Article  Google Scholar 

  46. 46.

    Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256 (2014).

    Article  Google Scholar 

  47. 47.

    Prudhomme, C. et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl Acad. Sci. USA 111, 3262–3267 (2014).

    Article  Google Scholar 

  48. 48.

    Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    Article  Google Scholar 

  49. 49.

    Wolter, K. & Timlin, M. S. Monitoring ENSO in COADS with a seasonally adjusted principal component index. In Proceedings of the 17th Climate Diagnostics Workshop, Norman, OK 52–57 (NOAA/NMC/CAC, NSSL, Oklahoma Climate Survey, CIMMS and the School of Meteorology, Univ. of Oklahoma, 1993).

  50. 50.

    Wolter, K. & Timlin, M. S. Measuring the strength of ENSO events – how does 1997/98 rank? Weather 53, 315–324 (1998).

    Article  Google Scholar 

  51. 51.

    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. Am. Geophys. Union 89, 93–94 (2008).

    Article  Google Scholar 

  52. 52.

    Masutomi, Y., Inui, Y., Takahashi, K. & Matsuoka, Y. Development of highly accurate global polygonal drainage basin data. Hydrol. Processes 23, 572–584 (2009).

    Article  Google Scholar 

  53. 53.

    Wiese, D. N. JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height JPL RL05M.1 (Physical Oceanography Distributed Active Archive Center, 2015).

  54. 54.

    Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 52, 7490–7502 (2016).

    Article  Google Scholar 

  55. 55.

    Wang, J., Sheng, Y. & Wada, Y. Little impact of the Three Gorges Dam on recent decadal lake decline across China’s Yangtze Plain. Water Resour. Res. 53, 3854–3877 (2017).

    Article  Google Scholar 

  56. 56.

    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).

    Article  Google Scholar 

  57. 57.

    Sheng, Y. et al. Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sens. Environ. 185, 129–141 (2016).

    Article  Google Scholar 

  58. 58.

    Schwatke, C., Dettmering, D., Bosch, W. & Seitz, F. DAHITI—an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 19, 4345–4364 (2015).

    Article  Google Scholar 

  59. 59.

    Crétaux, J. F. et al. SOLS: a lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 47, 1497–1507 (2011).

    Article  Google Scholar 

  60. 60.

    Wang, J., Sheng, Y. & Tong, T. S. D. Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam. Remote Sens. Environ. 152, 251–269 (2014).

    Article  Google Scholar 

  61. 61.

    RGI Consortium. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0: Technical Report (Global Land Ice Measurements from Space, Boulder, 2017).

  62. 62.

    Gardelle, J., Berthier, E., Arnaud, Y. & Kääb, A. Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere 7, 1263–1286 (2013).

    Article  Google Scholar 

  63. 63.

    Neckel, N., Loibl, D. & Rankl, M. Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet. Earth Planet. Sci. Lett. 464, 95–102 (2017).

    Article  Google Scholar 

  64. 64.

    Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

    Article  Google Scholar 

  65. 65.

    Tadono, T. et al. Precise global DEM generation by ALOS PRISM. ISPRS Annals Photogram. Remote Sens. Spatial Inf. Sci. II-4, 71–76 (2014).

    Article  Google Scholar 

  66. 66.

    Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7, 877–887 (2013).

    Article  Google Scholar 

  67. 67.

    Falaschi, D. et al. Mass changes of alpine glaciers at the eastern margin of the Northern and Southern Patagonian Icefields between 2000 and 2012. J. Glaciol. 63, 258–272 (2017).

    Article  Google Scholar 

  68. 68.

    Mernild, S. H., Liston, G. E., Hiemstra, C. & Wilson, R. The Andes Cordillera. Part III: glacier surface mass balance and contribution to sea level rise (1979–2014). Int. J. Climatol. 37, 3154–3174 (2017).

    Article  Google Scholar 

  69. 69.

    Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080–E1089 (2018).

    Article  Google Scholar 

  70. 70.

    Long, D. et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 192, 198–216 (2017).

    Article  Google Scholar 

  71. 71.

    Döll, P., Kaspar, F. & Lehner, B. A global hydrological model for deriving water availability indicators: model tuning and validation. J. Hydrol. 270, 105–134 (2003).

    Article  Google Scholar 

  72. 72.

    Müller Schmied, H. et al. Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol. Earth Syst. Sci. 18, 3511–3538 (2014).

    Article  Google Scholar 

  73. 73.

    Wada, Y. & Bierkens, M. F. P. Sustainability of global water use: past reconstruction and future projections. Environ. Res. Lett. 9, 104003 (2014).

    Article  Google Scholar 

  74. 74.

    Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

    Article  Google Scholar 

  75. 75.

    Khandu, Forootan, E., Schumacher, M., Awange, J. L. & Müller Schmied, H. Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges–Brahmaputra–Meghna River Basin. Water Resour. Res. 52, 2240–2258 (2016).

  76. 76.

    Tangdamrongsub, N. et al. Evaluation of groundwater storage variations estimated from GRACE data assimilation and state-of-the-art land surface models in Australia and the North China Plain. Remote Sens. 10, 483 (2018).

    Article  Google Scholar 

  77. 77.

    Margulis, S. A., Cortes, G., Girotto, M. & Durand, M. A Landsat-Era Sierra Nevada Snow Reanalysis (1985-2015). J. Hydrometeorol. 17, 1203–1221 (2016).

    Article  Google Scholar 

  78. 78.

    Wrzesien, M. L. et al. Comparison of methods to estimate snow water equivalent at the mountain range scale: a case study of the California Sierra Nevada. J. Hydrometeorol. 18, 1101–1119 (2017).

    Article  Google Scholar 

  79. 79.

    Snow Data Assimilation System (SNODAS) Data Products at NSIDC, Version 1 (National Snow and Ice Data Center, Boulder, 2004; accessed 19 March 2018).

  80. 80.

    Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).

    Article  Google Scholar 

  81. 81.

    Xie, P. P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 78, 2539–2558 (1997).

    Article  Google Scholar 

  82. 82.

    Schneider, U. et al. GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data (NOAA Earth System Research Laboratory Physical Sciences Division, 2011; accessed 24 August 2016).

  83. 83.

    Adler, R. F. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).

    Article  Google Scholar 

  84. 84.

    Chen, M. Y., Xie, P. P., Janowiak, J. E. & Arkin, P. A. Global land precipitation: a 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).

    Article  Google Scholar 

  85. 85.

    You, Q. L., Min, J. Z., Zhang, W., Pepin, N. & Kang, S. C. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Clim. Dynam. 45, 791–806 (2015).

    Article  Google Scholar 

  86. 86.

    New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Climate Res. 21, 1–25 (2002).

    Article  Google Scholar 

  87. 87.

    Wu, J. & Gao, X. J. A gridded daily observation dataset over China region and comparison with the other datasets. Chinese J. Geophys. 56, 1102–1111 (2013).

    Google Scholar 

  88. 88.

    Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  89. 89.

    Vose, R. S. et al. NOAA’s merged land–ocean surface temperature analysis. Bull. Am. Meteorol. Soc. 93, 1677–1685 (2012).

    Article  Google Scholar 

  90. 90.

    Rohde, R. et al. A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinfor. Geostat. Overview 1, (2013).

Download references


This research was supported by Kansas State University faculty start-up fund to J.W., NASA Surface Water and Ocean Topography (SWOT) Grant (no. NNX16AH85G) to Y.S. and China’s Thousand Young Talents Program (no. Y7QR011001) to C.S. This work was funded in part by the NASA Sea Level Change team. A portion of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Assistance for the endorheic basin aggregation and lake mapping was provided by M. Ding, T. Urano and C. Bailey (Kansas State University). We thank E. Berthier (OMP/LEGOS) for support in providing glacier mass change data and comments on the manuscript, and L. Ke, H. Pan and S. Zhan (UCLA) for helping collect meteorological and altimetry data. Constructive suggestions were provided by K. Yang (University of Colorado Boulder) on the SWE validation, Q. Cao (UCLA) on the soil moisture validation, M. Ménégoz (Barcelona Supercomputing Center) on climate variability and J. M. McAlister (Oklahoma State University) on scientific implications and writing.

Author information




J.W. and C.S. conceived the presented study and performed the analysis. Y.S. initiated the separation of endorheic and exorheic basins. F.B. contributed to data analysis of glacier mass changes. Y.W. and H.M.S. provided model simulations and contributed to water balance analyses. F.Y. participated in model validations and lake storage analysis. J.W., J.T.R. and C.S. developed and conducted the assessment of mascon rescaling uncertainties, with constructive feedback from Y.W. and F.Y. Y.W., G.M.M., J.S.F., H.M.S. and R.A.M. provided critical insights on method design and result interpretation. J.W. wrote the initial draft of the paper, with substantial contributions from all authors.

Corresponding author

Correspondence to Jida Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Tables.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Song, C., Reager, J.T. et al. Recent global decline in endorheic basin water storages. Nature Geosci 11, 926–932 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing