Perspective | Published:

CO2 evasion along streams driven by groundwater inputs and geomorphic controls

Nature Geosciencevolume 11pages813818 (2018) | Download Citation


Headwaters are hotspots of carbon dioxide (CO2) evasion from rivers. While emerging evidence suggests that groundwater contributes disproportionately to CO2 in headwater streams, the processes of CO2 delivery to streams and subsequent evasion to the atmosphere remain largely unknown. Here we show the variability of CO2 input and evasion fluxes based on coupled measurements of dissolved CO2 along streams and in adjacent groundwater from two headwater catchments of the tropical and temperate zones. We find that the processes can be highly localized in both space and time. Spatially, they are significantly influenced by heterogeneities in the subsurface and stream landscape; temporally, they predominately occur during the transient activation of connected subsurface water flows. We highlight sharp increases and decreases in the stream CO2 flux, and suggest that current models fail to capture the true magnitude of CO2 evasion. The high spatial and temporal variability of CO2 input from groundwater and evasion to the atmosphere makes accurate assessment of CO2 evasion fluxes difficult, and will require a collaborative effort by catchment hydrologists and aquatic ecologists to fully understand the contribution of groundwater to stream CO2 emissions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007).

  2. 2.

    Devol, A. H., Quay, P. D., Richey, J. E. & Martinelli, L. A. The role of gas exchange in the inorganic carbon, oxygen, and 222Rn budgets of the Amazon River. Limnol. Oceanogr. 32, 235–248 (1987).

  3. 3.

    Kling, G. W., Kipphut, G. W. & Miller, M. C. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251, 298–301 (1991).

  4. 4.

    Butman, D. & Raymond, P. A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat. Geosci. 4, 839–842 (2011).

  5. 5.

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

  6. 6.

    Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P. & Regnier, P. A. G. Spatial patterns in CO2 evasion from the global river network. Global Biogeochem. Cycles 29, 534–554 (2015).

  7. 7.

    Marx, A. et al. A review of CO2 and associated carbon dynamics in headwater streams: a global perspective. Rev. Geophys. 55, 560–585 (2017).

  8. 8.

    Butman, D. et al. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting. Proc. Natl Acad. Sci. USA 113, 58–63 (2016).

  9. 9.

    Sawakuchi, H. O. et al. Carbon dioxide emissions along the Lower Amazon River. Front. Mar. Sci. 4, 76 (2017).

  10. 10.

    Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

  11. 11.

    Resplandy, L. et al. Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11, 504–509 (2018).

  12. 12.

    Peter, H. et al. Scales and drivers of temporal pCO2 dynamics in an Alpine stream. J. Geophys. Res. Biogeosci. 119, 1078–1091 (2014).

  13. 13.

    Crawford, J. T. et al. CO2 and CH4 emissions from streams in a lake-rich landscape: patterns, controls, and regional significance. Global Biogeochem. Cycles 28, 197–210 (2014).

  14. 14.

    Leith, F. I. et al. Carbon dioxide transport across the hillslope-riparian-stream continuum in a boreal headwater catchment. Biogeosciences 12, 1881–1892 (2015).

  15. 15.

    Looman, A. et al. Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream. Sci. Total Environ. 550, 645–657 (2016).

  16. 16.

    Schelker, J., Singer, G. A., Ulseth, A. J., Hengsberger, S. & Battin, T. J. CO2 evasion from a steep, high gradient stream network: importance of seasonal and diurnal variation in aquatic pCO2 and gas transfer. Limnol. Oceanogr. 61, 1826–1838 (2016).

  17. 17.

    Winterdahl, M. et al. Decoupling of carbon dioxide and dissolved organic carbon in boreal headwater streams. J. Geophys. Res. Biogeosci. 121, 2630–2651 (2016).

  18. 18.

    Rasilo, T., Hutchins, R. H. S., Ruiz-González, C. & del Giorgio, P. A. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams. Sci. Total Environ. 579, 902–912 (2017).

  19. 19.

    Crawford, J. T., Stanley, E. H., Dornblaser, M. M. & Striegl, R. G. CO2 time series patterns in contrasting headwater streams of North America. Aquat. Sci. 79, 473–486 (2017).

  20. 20.

    Boodoo, K. S., Trauth, N., Schmidt, C., Schelker, J. & Battin, T. J. Gravel bars are sites of increased CO2 outgassing in stream corridors. Sci. Rep. 7, 14401 (2017).

  21. 21.

    Campeau, A. et al. Stable carbon isotopes reveal soil-stream DIC linkages in contrasting headwater catchments. J. Geophys. Res. Biogeosci. 123, 149–167 (2018).

  22. 22.

    Deirmendjian, L. & Abril, G. Carbon dioxide degassing at the groundwater-stream-atmosphere interface: isotopic equilibration and hydrological mass balance in a sandy watershed. J. Hydrol. 558, 129–143 (2018).

  23. 23.

    Johnson, M. S. et al. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys. Res. Lett. 35, L17401 (2008).

  24. 24.

    Öquist, M. G., Wallin, M., Seibert, J., Bishop, K. & Laudon, H. Dissolved inorganic carbon export across the soil/stream interface and its fate in a boreal headwater stream. Environ. Sci. Technol. 43, 7364–7369 (2009).

  25. 25.

    Hope, D., Palmer, S. M., Billett, M. F. & Dawson, J. J. C. Variations in dissolved CO2 and CH4 in a first-order stream and catchment: an investigation of soil–stream linkages. Hydrol. Process. 18, 3255–3275 (2004).

  26. 26.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

  27. 27.

    Hall, R. O., Tank, J. L., Baker, M. A., Rosi-Marshall, E. J. & Hotchkiss, E. R. Metabolism, gas exchange, and carbon spiraling in rivers. Ecosystems 19, 73–86 (2016).

  28. 28.

    Stets, E. G. et al. Carbonate buffering and metabolic controls on carbon dioxide in rivers. Global Biogeochem. Cycles 31, 663–677 (2017).

  29. 29.

    Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).

  30. 30.

    Campeau, A. et al. Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. Sci. Rep. 7, 9158 (2017).

  31. 31.

    Winter, T. C. The role of ground water in generating streamflow in headwater areas and in maintaining base flow. J. Am. Water Resour. Assoc. 43, 15–25 (2007).

  32. 32.

    Sklash, M. G. & Farvolden, R. N. The role of groundwater in storm runoff. J. Hydrol. 43, 45–65 (1979).

  33. 33.

    Corson-Rikert, H. A., Wondzell, S. M., Haggerty, R. & Santelmann, M. V. Carbon dynamics in the hyporheic zone of a headwater mountain stream in the Cascade Mountains, Oregon. Water Resour. Res. 52, 7556–7576 (2016).

  34. 34.

    McDonnell, J. J. A rationale for old water discharge through macropores in a steep, humid catchment. Water Resour. Res. 26, 2821–2832 (1990).

  35. 35.

    Haria, A. H. & Shand, P. Evidence for deep sub-surface flow routing in forested upland Wales: implications for contaminant transport and stream flow generation. Hydrol. Earth Syst. Sci. 8, 334–344 (2004).

  36. 36.

    Tromp-van Meerveld, H. J., Peters, N. E. & McDonnell, J. J. Effect of bedrock permeability on subsurface stormflow and the water balance of a trenched hillslope at the Panola Mountain Research Watershed, Georgia, USA. Hydrol. Process. 21, 750–769 (2007).

  37. 37.

    Beven, K. & Germann, P. Macropores and water flow in soils revisited. Water Resour. Res. 49, 3071–3092 (2013).

  38. 38.

    Uhlenbrook, S. Catchment hydrology—a science in which all processes are preferential. Hydrol. Process. 20, 3581–3585 (2006).

  39. 39.

    Weiler, M. Macropores and preferential flow—a love-hate relationship. Hydrol. Proess. 31, 15–19 (2017).

  40. 40.

    Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluids Environ. 2, 41–53 (2012).

  41. 41.

    Crawford, J. T., Dornblaser, M. M., Stanley, E. H., Clow, D. W. & Striegl, R. G. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes. J. Geophys. Res. Biogeosci. 120, 952–964 (2015).

  42. 42.

    Tromp-van Meerveld, H. J. & McDonnell, J. J. Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Resour. Res. 42, W02411 (2006).

  43. 43.

    Mast, M. A., Wickland, K. P., Striegl, R. T. & Clow, D. W. Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado. Global Biogeochem. Cycles 12, 607–620 (1998).

  44. 44.

    Johnson, M. S., Weiler, M., Couto, E. G., Riha, S. J. & Lehmann, J. Storm pulses of dissolved CO2 in a forested headwater Amazonian stream explored using hydrograph separation. Water Resour. Res. 43, W11201 (2007).

  45. 45.

    Cook, P. G. Estimating groundwater discharge to rivers from river chemistry surveys. Hydrol. Process. 27, 3694–3707 (2013).

  46. 46.

    Briggs, M. A., Lautz, L. K. & McKenzie, J. M. A comparison of fibre-optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams. Hydrol. Process. 26, 1277–1290 (2012).

  47. 47.

    Briggs, M. A., Lautz, L. K., McKenzie, J. M., Gordon, R. P. & Hare. D. K. Using high‐resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resour. Res. 48, (2012).

  48. 48.

    Song, C. et al. Continental-scale decrease in net primary productivity in streams due to climate warming. Nat. Geosci. 11, 415–420 (2018).

  49. 49.

    Parsekian, A. D., Singha, K., Minsley, B. J., Holbrook, W. S. & Slater, L. Multiscale geophysical imaging of the critical zone. Rev. Geophys. 53, 1–26 (2015).

  50. 50.

    Binley, A. et al. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 51, 3837–3866 (2015).

  51. 51.

    van Geldern, R. et al. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring. Anal. Chem. 86, 12191–12198 (2014).

  52. 52.

    Birkel, C., Soulsby, C., Tetzlaff, D., Dunn, S. & Spezia, L. High-frequency storm event isotope sampling reveals time-variant transit time distributions and influence of diurnal cycles. Hydrol. Process. 26, 308–316 (2012).

  53. 53.

    Benettin, P. et al. Using SAS functions and high-resolution isotope data to unravel travel time distributions in headwater catchments. Water Resour. Res. 53, 1864–1878 (2017).

  54. 54.

    Birkel, C. & Soulsby, C. Advancing tracer-aided rainfall–runoff modelling: a review of progress, problems and unrealised potential. Hydrol. Process. 29, 5227–5240 (2015).

  55. 55.

    McGuire, K. J. et al. Network analysis reveals multiscale controls on streamwater chemistry. Proc. Natl Acad. Sci. USA 111, 7030–7035 (2014).

  56. 56.

    Gran, G. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 77, 661–671 (1952).

  57. 57.

    Plummer, L. N. & Busenberg, E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim. Cosmochim. Acta 46, 1011–1040 (1982).

  58. 58.

    Chaplot, V. A. M., Rumpel, C. & Valentin, C. Water erosion impact on soil and carbon redistributions within uplands of Mekong River. Global Biogeochem. Cycles 19, Gb4004 (2005).

  59. 59.

    Ribolzi, O. et al. From shifting cultivation to teak plantation: effect on overland flow and sediment yield in a montane tropical catchment. Sci. Rep. 7, 3987 (2017).

  60. 60.

    Marx, A. et al. Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach. Biogeosciences 15, 3093–3106 (2018).

  61. 61.

    Šanda, M., Vitvar, T., Kulasová, A., Jankovec, J. & Císlerová, M. Run-off formation in a humid, temperate headwater catchment using a combined hydrological, hydrochemical and isotopic approach (Jizera Mountains, Czech Republic). Hydrol. Process. 28, 3217–3229 (2014).

  62. 62.

    Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399–4981 (2015).

  63. 63.

    Day, T. J. On the precision of salt dilution gauging. J. Hydrol. 31, 293–306 (1976).

  64. 64.

    Atkins, M. L., Santos, I. R., Ruiz-Halpern, S. & Maher, D. T. Carbon dioxide dynamics driven by groundwater discharge in a coastal floodplain creek. J. Hydrol. 493, 30–42 (2013).

  65. 65.

    Tweed, S. et al. Leaky savannas: the significance of lateral carbon fluxes in the seasonal tropics. Hydrol. Process. 30, 873–887 (2016).

  66. 66.

    Choi, J., Hulseapple, S. M., Conklin, M. H. & Harvey, J. W. Modeling CO2 degassing and pH in a stream–aquifer system. J. Hydrol. 209, 297–310 (1998).

  67. 67.

    Davidson, E. A., Figueiredo, R. O., Markewitz, D. & Aufdenkampe, A. K. Dissolved CO2 in small catchment streams of eastern Amazonia: a minor pathway of terrestrial carbon loss. J. Geophys. Res. Biogeosci. 115, G04005 (2010).

  68. 68.

    Lorah, M. M. & Herman, J. S. The chemical evolution of a travertine-depositing stream: geochemical processes and mass transfer reactions. Water Resour. Res. 24, 1541–1552 (1988).

  69. 69.

    Hoffer-French, K. J. & Herman, J. S. Evaluation of hydrological and biological influences on CO2 fluxes from a karst stream. J. Hydrol. 108, 189–212 (1989).

  70. 70.

    Chiodini, G. et al. Quantification of deep CO2 fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chem. Geol. 159, 205–222 (1999).

  71. 71.

    Dawson, J. J. C., Bakewell, C. & Billett, M. F. Is in-stream processing an important control on spatial changes in carbon fluxes in headwater catchments? Sci. Total Environ. 265, 153–167 (2001).

  72. 72.

    Doctor, D. H. et al. Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream. Hydrol. Process. 22, 2410–2423 (2008).

  73. 73.

    Piñol, J. & Avila, A. Streamwater pH, alkalinity, pCO2 and discharge relationships in some forested Mediterranean catchments. J. Hydrol. 131, 205–225 (1992).

  74. 74.

    Dawson, J. J. C., Hope, D., Cresser, M. S. & Billett, M. F. Downstream changes in free carbon dioxide in an upland catchment from Northeastern Scotland. J. Environ. Qual. 24, 699–706 (1995).

  75. 75.

    van Geldern, R., Schulte, P., Mader, M., Baier, A. & Barth, J. A. C. Spatial and temporal variations of pCO2, dissolved inorganic carbon and stable isotopes along a temperate karstic watercourse. Hydrol. Process. 29, 3423–3440 (2015).

Download references


We acknowledge funding from the Australian Research Council (DP160101497), the German Research Foundation (project 718 BA 2207/10-1) and the French Institut de Recherche pour le Développement. D.E.B. was partially supported by a NASA Carbon Cycle Science grant (NNX17AI74G). We thank M. S. Johnson, J. B. Shanley and D. H. Doctor for sharing important site information and data, and J. A. C. Barth for insightful comments on an earlier version of the manuscript. This paper also benefited from discussions with M. I. Bird, M. Rudge and R. T. Barnes. We acknowledge the Lao Department of Agricultural Land Management and the M-TROPICS observatory for access to the Houay Pano site, as well as the Czech Geological Survey for access to the Uhlirska site. N. Silvera, K. Latsachack, J.-P. Thiébaut, K. Xayyathip, M. Sanda, J. Jankovec and A. Kulasova are thanked for fieldwork assistance.

Author information


  1. Research Institute for the Environment & Livelihoods, Charles Darwin University, Darwin, Australia

    • Clément Duvert
    •  & Lindsay B. Hutley
  2. School of Environmental & Forest Sciences, University of Washington, Seattle, WA, USA

    • David E. Butman
  3. Department of Geography and Geosciences, Friedrich-Alexander University, Erlangen, Germany

    • Anne Marx
  4. Géosciences Environnement Toulouse, IRD, Université de Toulouse, UMR 5563, CNRS, UPS, Toulouse, France

    • Olivier Ribolzi


  1. Search for Clément Duvert in:

  2. Search for David E. Butman in:

  3. Search for Anne Marx in:

  4. Search for Olivier Ribolzi in:

  5. Search for Lindsay B. Hutley in:


C.D. conceived the analysis and carried out the literature review and data analysis. D.E.B. contributed to the conceptual development of the manuscript, data analysis and presentation. L.B.H. was involved with discussions particularly during early stages of the manuscript. A.M. collected the ‘Uhlirska’ dataset and contributed to data analysis. O.R. and C.D. collected the ‘Houay Pano’ dataset. C.D. wrote the first draft and all authors edited and commented on various iterations of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Clément Duvert.

Supplementary information

  1. Supplementary Information

    Supplementary Details, Supplementary Figures 1–3, Supplementary Table 1.

About this article

Publication history