Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

O2 solubility in Martian near-surface environments and implications for aerobic life


Due to the scarcity of O2 in the modern Martian atmosphere, Mars has been assumed to be incapable of producing environments with sufficiently large concentrations of O2 to support aerobic respiration. Here, we present a thermodynamic framework for the solubility of O2 in brines under Martian near-surface conditions. We find that modern Mars can support liquid environments with dissolved O2 values ranging from ~2.5 × 10−6 mol m−3 to 2 mol m−3 across the planet, with particularly high concentrations in polar regions because of lower temperatures at higher latitudes promoting O2 entry into brines. General circulation model simulations show that O2 concentrations in near-surface environments vary both spatially and with time—the latter associated with secular changes in obliquity, or axial tilt. Even at the limits of the uncertainties, our findings suggest that there can be near-surface environments on Mars with sufficient O2 available for aerobic microbes to breathe. Our findings may help to explain the formation of highly oxidized phases in Martian rocks observed with Mars rovers, and imply that opportunities for aerobic life may exist on modern Mars and on other planetary bodies with sources of O2 independent of photosynthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Solubility of O2 in liquids on modern Mars as a function of temperature for 6.1 mbar.
Fig. 2: O2 solubilities in liquids on modern Mars for 6.1 mbar and 140–300 K compared with Earth today.
Fig. 3: Spatial variation of O2 solubility in Ca-perchlorate brines on modern Mars.
Fig. 4: Evolution of aerobic environments on Mars due to obliquity change for Ca-perchlorate brines.

Data availability

The generated data output from the climate model used for this study can be made available upon request from the authors.


  1. 1.

    Catling, D. C., Glein, C. R., Zahnle, K. J. & McKay, C. P. Why O2 is required by complex life on habitable planets and the concept of planetary ‘oxygenation time’. Astrobiology 5, 415–438 (2005).

    Article  Google Scholar 

  2. 2.

    Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).

    Article  Google Scholar 

  3. 3.

    Nair, H., Allen, M., Anbar, A. D., Yung, Y. L. & Clancy, R. T. A photochemical model of the Martian atmosphere. Icarus 111, 124–150 (1994).

    Article  Google Scholar 

  4. 4.

    Mahaffy, P. R. et al. Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover. Science 341, 263–266 (2013).

    Article  Google Scholar 

  5. 5.

    Barker, E. S. Detection of molecular oxygen in the Martian atmosphere. Nature 238, 447–448 (1972).

    Article  Google Scholar 

  6. 6.

    Owen, T. et al. The composition of the atmosphere at the surface of Mars. J. Geophys. Res. 82, 4635–4639 (1977).

    Article  Google Scholar 

  7. 7.

    Hartogh, P. et al. Herschel/HIFI observations of Mars: first detection of O2 at submillimeter wavelength and upper limits on HCl and H2O2. Astron. Astrophys. 521, L49 (2010).

    Article  Google Scholar 

  8. 8.

    Shaheen, R., Niles, P. B., Chong, K., Corrigan, C. M. & Thiemens, M. H. Carbonate formation events in ALH84001 trace the evolution of the Martian atmosphere. Proc. Natl Acad. Sci. USA 112, 336–341 (2015).

    Article  Google Scholar 

  9. 9.

    Lanza, N. L. et al. High manganese concentrations in rocks at Gale crater, Mars. Geophys. Res. Lett. 41, 5755–5763 (2014).

    Article  Google Scholar 

  10. 10.

    Arvidson, R. E. et al. High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour crater, Mars. Am. Mineral. 101, 1389–1405 (2016).

    Article  Google Scholar 

  11. 11.

    Hurowitz, J. A. Redox stratification of an ancient lake in Gale crater, Mars. Science 356, eaah6849 (2017).

    Article  Google Scholar 

  12. 12.

    Ojha, L. et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832 (2015).

    Article  Google Scholar 

  13. 13.

    Rummel, J. D. et al. A new analysis of Mars ‘Special Regions’: findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 14, 887–968 (2014).

    Article  Google Scholar 

  14. 14.

    Kounaves, S. P. et al. Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications. Icarus 232, 226–231 (2014).

    Article  Google Scholar 

  15. 15.

    Leshin, L. A. et al. Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover. Science 341, 1238937 (2013).

    Article  Google Scholar 

  16. 16.

    Toner, J. D., Catling, D. C. & Light, B. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars. Icarus 233, 36–47 (2014).

    Article  Google Scholar 

  17. 17.

    Pestova, O. N., Myund, L. A., Khripun, M. K. & Prigaro, A. V. Polythermal study of the systems M(ClO4)2-H2O (M2+ = Mg2+, Ca2+, Sr2+, Ba2+). Russ. J. Appl. Chem. 78, 409–413 (2005).

    Article  Google Scholar 

  18. 18.

    Marion, G. M., Catling, D. C., Zahnle, K. J. & Claire, M. W. Modeling aqueous perchlorate chemistries with applications to Mars. Icarus 207, 675–685 (2010).

    Article  Google Scholar 

  19. 19.

    Zakem, E. J. & Follows, M. J. A theoretical basis for a nanomolar critical oxygen concentration. Limnol. Oceanogr. 62, 795–805 (2017).

    Article  Google Scholar 

  20. 20.

    Stolper, D. A., Revsbech, N. P. & Canfield, D. E. Aerobic growth at nanomolar oxygen concentrations. Proc. Natl Acad. Sci. USA 107, 18755–18760 (2010).

    Article  Google Scholar 

  21. 21.

    Mills, D. B. et al. Oxygen requirements of the earliest animals. Proc. Natl Acad. Sci. USA 111, 4168–4172 (2014).

    Article  Google Scholar 

  22. 22.

    Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004).

    Article  Google Scholar 

  23. 23.

    Richardson, M. I., Toigo, A. D. & Newman, C. E. PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. 112, E09001 (2007).

    Google Scholar 

  24. 24.

    Toigo, A. D., Lee, C., Newman, C. E. & Richardson, M. I. The impact of resolution on the dynamics of the Martian global atmosphere: varying resolution studies with the MarsWRF GCM. Icarus 221, 276–288 (2012).

    Article  Google Scholar 

  25. 25.

    Archer, D. G. & Carter, R. W. Thermodynamic properties of the NaCl + H2O system. 4. Heat capacities of H2O and NaCl(aq) in cold-stable and supercooled states. J. Phys. Chem. B 104, 8563–8584 (2000).

    Article  Google Scholar 

  26. 26.

    Toner, J. D. & Catling, D. C. Water activities of NaClO4, Ca(ClO4)2, and Mg(ClO4)2 brines from experimental heat capacities: water activity >0.6 below 200 K. Geochim. Cosmochim. Acta 181, 164–174 (2016).

    Article  Google Scholar 

  27. 27.

    Clegg, S. L. & Brimblecombe, P. The solubility and activity coefficient of oxygen in salt solutions and brines. Geochim. Cosmochim. Acta 54, 3315–3328 (1990).

    Article  Google Scholar 

  28. 28.

    Konnik, E. I. Salting-out and salting-in of gaseous non-electrolytes in aqueous solutions of electrolytes. Russ. Chem. Rev. 46, 577–588 (1977).

    Article  Google Scholar 

  29. 29.

    Pitzer, K. S. Theoretical considerations of solubility with emphasis on mixed aqueous electrolytes. Pure Appl. Chem. 58, 1599–1610 (1989).

    Article  Google Scholar 

  30. 30.

    Toner, J. D., Catling, D. C. & Light, B. A revised Pitzer model for low-temperature soluble salt assemblages at the Phoenix site, Mars. Geochim. Cosmochim. Acta 166, 327–343 (2015).

    Article  Google Scholar 

  31. 31.

    Silvester, L. F. & Pitzer, K. S. Thermodynamics of electrolytes. X. Enthalpy and the effect of temperature on the activity coefficients. J. Solution Chem. 7, 327–337 (1978).

    Article  Google Scholar 

  32. 32.

    Tromans, D. Modeling oxygen solubility in water and electrolyte solutions. Ind. Eng. Chem. Res. 39, 805–812 (2000).

    Article  Google Scholar 

  33. 33.

    Kasting, J. F., Liu, S. C. & Donahue, T. M. Oxygen levels in the prebiological atmosphere. J. Geophys. Res. 84, 3097–3107 (1979).

    Article  Google Scholar 

  34. 34.

    Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).

    Article  Google Scholar 

  35. 35.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  Google Scholar 

  36. 36.

    Johnson, J. E., Gerpheide, A., Lamb, M. P. & Fischer, W. W. O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Geol. Soc. Am. Bull. 126, 813–830 (2014).

    Article  Google Scholar 

  37. 37.

    Webster et al. Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 360, 1093–1096 (2018).

    Article  Google Scholar 

  38. 38.

    Orosei, et al. Radar evidence of subglacial liquid water on Mars. Science 361, 1093–1096 (2018).

    Google Scholar 

  39. 39.

    Grotzinger, J. P. & Milliken, R. E. in Sedimentary Geology of Mars SEPM Special Publication Vol. 102 (eds Grotzinger, J. P. & Milliken, R. E.) 1–48 (Society for Sedimentary Geology, Tulsa, 2012).

  40. 40.

    Tromans, D. Temperature and pressure dependent solubility of oxygen in water: a thermodynamic analysis. Hydrometallurgy 48, 327–342 (1998).

    Article  Google Scholar 

  41. 41.

    Tromans, D. Oxygen solubility modeling in inorganic solutions: concentration, temperature and pressure effects. Hydrometallurgy 50, 279–296 (1998).

    Article  Google Scholar 

  42. 42.

    Toner, J. D., Catling, D. C. & Light, B. A revised Pitzer model for low-temperature soluble salt assemblages at the Phoenix site, Mars. Geochim. Cosmochim. Acta 166, 327–343 (2015).

    Article  Google Scholar 

  43. 43.

    Khomutov, N. E. & Konnik, E. I. Solubility of oxygen in aqueous electrolyte solutions. Russ. J. Phys. Chem. 48, 359–362 (1974).

    Google Scholar 

  44. 44.

    Manion, J. A. et al. NIST Standard Reference Database 17 Version 7.0 Release 1.6.8 (National Institute of Standards and Technology, 2016).

  45. 45.

    Li, D. et al. Phase diagrams and thermochemical modeling of salt lake brine systems. II. NaCl+H2O, KCl+H2O, MgCl2+H2O and CaCl2+H2O systems. Calphad 53, 78–89 (2016).

    Article  Google Scholar 

  46. 46.

    Skamarock, W. C. & Klemp, J. B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227, 3465–3485 (2008).

    Article  Google Scholar 

  47. 47.

    Arakawa, A. & Lamb, V. R. Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys. 17, 173–265 (1977).

    Google Scholar 

  48. 48.

    Guo, X., Lawson, W. G., Richardson, M. I. & Toigo, A. Fitting the Viking lander surface pressure cycle with a Mars general circulation model. J. Geophys. Res. 114, E07006 (2009).

    Google Scholar 

  49. 49.

    Christensen, P. R. et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. J. Geophys. Res. 106, 23823–23871 (2001).

    Article  Google Scholar 

  50. 50.

    Putzig, N. & Mellon, M. Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 191, 68–94 (2007).

    Article  Google Scholar 

  51. 51.

    Mischna, M. A. On the orbital forcing of Martian water and CO2 cycles: a general circulation model study with simplified volatile schemes. J. Geophys. Res. 108, E65062 (2003).

    Article  Google Scholar 

  52. 52.

    Forget, F., Haberle, R. M., Montmessin, F., Levrard, B. & Head, J. W. Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311, 368–371 (2006).

    Article  Google Scholar 

  53. 53.

    Haberle, R. M., Murphy, J. R. & Schaeffer, J. Orbital change experiments with a Mars general circulation model. Icarus 161, 66–89 (2003).

    Article  Google Scholar 

Download references


V.S. would like to dedicate this work in memory of A. S. Kubik who inspired so many to search for life on other worlds and brought so much life to this planet. V.S. thanks the Simons Foundation Collaboration on the Origins of Life for supporting this work (338555). A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. W.W.F. acknowledges support of the David and Lucile Packard Foundation and Simons Foundation Collaboration on the Origins of Life, and L.M.W. the support of a NASA Earth Space and Science Fellowship. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center as well as the High-Performance Computing facilities of the Jet Propulsion Laboratory, Office of the Chief Information Officer.

Author information




V.S., L.M.W. and W.W.F. conceptualized this study. M.M. ran the GCM simulations for all obliquities. V.S. developed the solubility model for all brines, extended the idea to a three-dimensional and time-dependent (obliquity-driven) solubility framework, led the writing of the manuscript and prepared all figures and tables. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Vlada Stamenković.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–4, Supplementary Tables 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stamenković, V., Ward, L.M., Mischna, M. et al. O2 solubility in Martian near-surface environments and implications for aerobic life. Nature Geosci 11, 905–909 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing