Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Geological and climatic influences on mountain biodiversity


Mountains are key features of the Earth’s surface and host a substantial proportion of the world’s species. However, the links between the evolution and distribution of biodiversity and the formation of mountains remain poorly understood. Here, we integrate multiple datasets to assess the relationships between species richness in mountains, geology and climate at global and regional scales. Specifically, we analyse how erosion, relief, soil and climate relate to the geographical distribution of terrestrial tetrapods, which include amphibians, birds and mammals. We find that centres of species richness correlate with areas of high temperatures, annual rainfall and topographic relief, supporting previous studies. We unveil additional links between mountain-building processes and biodiversity: species richness correlates with erosion rates and heterogeneity of soil types, with a varying response across continents. These additional links are prominent but under-explored, and probably relate to the interplay between surface uplift, climate change and atmospheric circulation through time. They are also influenced by the location and orientation of mountain ranges in relation to air circulation patterns, and how species diversification, dispersal and refugia respond to climate change. A better understanding of biosphere–lithosphere interactions is needed to understand the patterns and evolution of mountain biodiversity across space and time.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The world’s mountains and patterns of biodiversity.
Fig. 2: Global determinants of biodiversity across the world’s mountains.
Fig. 3: Regional determinants of mountain biodiversity.
Fig. 4: Linking the evolution of mountains and biodiversity.

Data availability

The datasets generated and analysed during the current study are available in the ZENODO repository


  1. 1.

    Fjeldså, J., Bowie, R. C. K. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265 (2012).

    Article  Google Scholar 

  2. 2.

    Badgley, C. et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211–226 (2017).

    Article  Google Scholar 

  3. 3.

    Hoorn, C., Mosbrugger, V., Mulch, A. & Antonelli, A. Biodiversity from mountain building. Nat. Geosci. 6, 154 (2013).

  4. 4.

    Eronen, J. T., Janis, C. M., Chamberlain, C. P. & Mulch, A. Mountain uplift explains differences in Palaeogene patterns of mammalian evolution and extinction between North America and Europe. Proc. R. Soc. B 282, 20150136 (2015).

    Article  Google Scholar 

  5. 5.

    Ebersbach, J. et al. In and out of the Qinghai-Tibet Plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. J. Biogeogr. 44, 900–910 (2016).

  6. 6.

    Favre, A. et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236–253 (2015).

    Article  Google Scholar 

  7. 7.

    Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).

    Article  Google Scholar 

  8. 8.

    Kutzbach, J. E., Prell, W. L. & Ruddiman, W. F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J. Geol. 101, 177–190 (1993).

    Article  Google Scholar 

  9. 9.

    Hay, W. W., Soeding, E., DeConto, R. M. & Wold, C. N. The Late Cenozoic uplift - climate change paradox. Intl J. Earth Sci. 91, 746–774 (2002).

  10. 10.

    Mix, H. T., Winnick, M. J., Mulch, A. & Chamberlain, C. P. Grassland expansion as an instrument of hydrologic change in Neogene western North America. Earth Planet. Sci. Lett. 377–378, 73–83 (2013).

  11. 11.

    Mulch, A. Stable isotope paleoaltimetry and the evolution of landscapes and life. Earth Planet. Sci. Lett. 433, 180–191 (2016).

    Article  Google Scholar 

  12. 12.

    Rowley, D. B. & Garzione, C. N. Stable isotope-based paleoaltimetry. Annu. Rev. Earth Planet. Sci. 35, 463–508 (2007).

    Article  Google Scholar 

  13. 13.

    Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–426 (2013).

    Article  Google Scholar 

  14. 14.

    The IUCN Red List of Threatened Species v.2013 (IUCN, 2013).

  15. 15.

    Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).

    Article  Google Scholar 

  16. 16.

    Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).

    Article  Google Scholar 

  17. 17.

    Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).

    Article  Google Scholar 

  18. 18.

    Fritz, S. A. et al. Diversity in time and space: wanted dead and alive. Trends Ecol. Evol. 28, 509–516 (2013).

  19. 19.

    Craw, D., Upton, P., Burridge, C. P., Wallis, G. P. & Waters, J. M. Rapid biological speciation driven by tectonic evolution in New Zealand. Nat. Geosci. 9, 140–144 (2016).

    Article  Google Scholar 

  20. 20.

    Currie, D. J. Energy and large-scale patterns of animal- and plant-species richness. Am. Nat. 137, 27–49 (1991).

    Article  Google Scholar 

  21. 21.

    Hawkins, B. A. et al. Energy, water, and broad-scale geographical patterns of species richness. Ecology 84, 3105–3117 (2003).

    Article  Google Scholar 

  22. 22.

    Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).

    Article  Google Scholar 

  23. 23.

    Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 15, 513–514 (2000).

    Article  Google Scholar 

  24. 24.

    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    Article  Google Scholar 

  25. 25.

    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).

    Article  Google Scholar 

  26. 26.

    Ricklefs, R. E. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7, 1–15 (2004).

    Article  Google Scholar 

  27. 27.

    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    Article  Google Scholar 

  28. 28.

    Kissling, W. D. et al. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl Acad. Sci. USA 109, 7379–7384 (2012).

    Article  Google Scholar 

  29. 29.

    Fritz, S. A. et al. Twenty-million-year relationship between mammalian diversity and primary productivity. Proc. Natl Acad. Sci. USA 113, 10908–10913 (2016).

    Article  Google Scholar 

  30. 30.

    Kissling, W. D. et al. Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecol. Biogeogr. 21, 909–921 (2012).

  31. 31.

    Mayhew, P. J., Bell, M. A., Benton, T. G. & McGowan, A. J. Biodiversity tracks temperature over time. Proc. Natl Acad. Sci. USA 109, 15141–15145 (2012).

    Article  Google Scholar 

  32. 32.

    Renner, S. S. Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages. J. Biogeogr. 43, 1479–1487 (2016).

    Article  Google Scholar 

  33. 33.

    Finarelli, J. A. & Badgley, C. Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate. Proc. R. Soc. B 277, 2721–2726 (2010).

    Article  Google Scholar 

  34. 34.

    Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).

    Article  Google Scholar 

  35. 35.

    Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).

    Article  Google Scholar 

  36. 36.

    Rahbek, C. et al. Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc. R. Soc. B 274, 165–174 (2007).

    Article  Google Scholar 

  37. 37.

    Hughes, C. E. & Atchison, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New. Phytol. 207, 275–282 (2015).

    Article  Google Scholar 

  38. 38.

    Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96 (2006).

    Article  Google Scholar 

  39. 39.

    Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Botany 127, 1–15 (2017).

    Article  Google Scholar 

  40. 40.

    Field, R. et al. Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr. 36, 132–147 (2009).

    Article  Google Scholar 

  41. 41.

    McCain, C. M. & Grytnes, J.-A. Elevational Gradients in Species Richness (John Wiley & Sons, Chichester, 2010).

  42. 42.

    Pearse, W. D. et al. Building up biogeography: pattern to process. J. Biogeogr. 45, 1223–1230 (2018).

    Article  Google Scholar 

  43. 43.

    Mulch, A., Uba, C. E., Strecker, M. R., Schoenberg, R. & Chamberlain, C. P. Late Miocene climate variability and surface elevation in the central Andes. Earth Planet. Sci. Lett. 290, 173–182 (2010).

    Article  Google Scholar 

  44. 44.

    Poulsen, C. J., Ehlers, T. A. & Insel, N. Onset of convective rainfall during gradual late Miocene rise of the Central Andes. Science 328, 490–493 (2010).

    Article  Google Scholar 

  45. 45.

    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

    Article  Google Scholar 

  46. 46.

    Price, T. D. et al. Niche filling slows the diversification of Himalayan songbirds. Nature 509, 222–225 (2014).

    Article  Google Scholar 

  47. 47.

    Flantua, S. G. A. et al. in Paleobotany and Biogeography: A Festschrift for Alan Graham in His 80th Year (eds Stevens, W. D., Montiel, O. M. & Raven, P. H.) 98–123 (Missouri Botanical Garden, St. Louis, 2014).

  48. 48.

    Flantua, S. G. A. & Hooghiemstra, H. in Mountains, Climate and Biodiversity (eds Hoorn, C., Perrigo, A. & Antonelli, A.) 171–185 (Wiley-Blackwell, Hoboken, 2018).

  49. 49.

    Herman, F. & Champagnac, J.-D. Plio-Pleistocene increase of erosion rates in mountain belts in response to climate change. Terra Nova 28, 2–10 (2016).

    Article  Google Scholar 

  50. 50.

    Whittaker, R. J., Triantis, K. A. & Ladle, R. J. A general dynamic theory of oceanic island biogeography. J. Biogeogr. 35, 977–994 (2008).

    Article  Google Scholar 

  51. 51.

    Baldwin, J. A., Bowring, S. A. & Williams, M. L. Petrological and geochronological constraints on high pressure, high temperature metamorphism in the Snowbird tectonic zone, Canada. J. Metamorph. Geol. 21, 81–98 (2003).

    Article  Google Scholar 

  52. 52.

    Beck, J. & Kitching, I. J. Drivers of moth species richness on tropical altitudinal gradients: a cross-regional comparison. Glob. Ecol. Biogeogr. 18, 361–371 (2009).

    Article  Google Scholar 

  53. 53.

    Barnagaud, J.-Y. et al. Ecological traits influence the phylogenetic structure of bird species co-occurrences worldwide. Ecol. Lett. 17, 811–820 (2014).

    Article  Google Scholar 

  54. 54.

    Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).

    Article  Google Scholar 

  55. 55.

    Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2016).

    Article  Google Scholar 

  56. 56.

    Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).

    Article  Google Scholar 

  57. 57.

    Baker, P. A. et al. The emerging field of geogenomics: constraining geological problems with genetic data. Earth Sci. Rev. 135, 38–47 (2014).

    Article  Google Scholar 

  58. 58.

    Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442 (2016).

    Article  Google Scholar 

  59. 59.

    Graham, C. H. et al. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37, 711–719 (2014).

    Article  Google Scholar 

  60. 60.

    Gallen, S. F. Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains. Earth Planet. Sci. Lett. 493, 150–160 (2018).

    Article  Google Scholar 

  61. 61.

    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

    Article  Google Scholar 

  62. 62.

    Rahbek, C., Hansen, L. A. & Fjeldså, J. One Degree Resolution Database of the Global Distribution of Birds. (The Natural History Museum of Denmark, University of Copenhagen, Denmark, 2012).

    Google Scholar 

  63. 63.

    Molnar, P. Mountain - Landform (Encyclopedia Britannica, Chicago, 2015).

  64. 64.

    Gordon, J. E. in Mountains, Climate and Biodiversity (eds. Hoorn, C., Perrigo, A. & Antonelli, A.) 137–154 (Wiley-Blackwell, Hoboken, 2018).

  65. 65.

    Hoorn, C., Perrigo, A. & Antonelli, A. (eds) in Mountains, Climate and Biodiversity 1–13 (Wiley-Blackwell, Hoboken, 2018).

  66. 66.

    Reiners, P. W. & Brandon, M. T. Using thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci. 34, 419–466 (2006).

    Article  Google Scholar 

  67. 67.

    Champagnac, J.-D., Valla, P. G. & Herman, F. Late-Cenozoic relief evolution under evolving climate: a review. Tectonophysics 614, 44–65 (2014).

    Article  Google Scholar 

  68. 68.

    Insel, N., Poulsen, C. J. & Ehlers, T. A. Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim. Dynam. 35, 1477–1492 (2010).

    Article  Google Scholar 

  69. 69.

    Garreaud, R. D., Molina, A. & Farias, M. Andean uplift, ocean cooling and Atacama hyperaridity: a climate modeling perspective. Earth Planet. Sci. Lett. 292, 39–50 (2010).

    Article  Google Scholar 

  70. 70.

    Barthlott, W., Mutke, J., Rafiqpoor, D., Kier, G. & Kreft, H. Global centers of vascular plant diversity. Nova Acta Leopoldina NF 92, 61–83 (2005).

  71. 71.

    Körner, C. Alpine ecosystems. eLS (2007);

  72. 72.

    von Humboldt, A. & Bonpland, A. Essai sur la Géographie des Plantes; Accompagné d’un Tableau Physique des Régions Équinoxiales (Chez Levrault, Schoell et compagnie, Paris, 1805).

  73. 73.

    Purvis, A. & Hector, A. Getting the measure of biodiversity. Nature 405, 212–219 (2000).

    Article  Google Scholar 

  74. 74.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article  Google Scholar 

  75. 75.

    Mace, G. M., Gittleman, J. L. & Purvis, A. Preserving the tree of life. Science 300, 1707–1709 (2003).

    Article  Google Scholar 

  76. 76.

    Whittaker, R. H. Evolution and measurement of species diversity. Taxon 21, 213–251 (1972).

    Article  Google Scholar 

  77. 77.

    Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33, 2–22 (2010).

    Article  Google Scholar 

  78. 78.

    Kreft, H., Sommer, J. H. & Barthlott, W. The significance of geographic range size for spatial diversity patterns in Neotropical palms. Ecography 29, 21–30 (2006).

    Article  Google Scholar 

  79. 79.

    Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).

    Article  Google Scholar 

  80. 80.

    Franklin, J. & Miller, J. A. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge Univ. Press, Cambridge, 2009).

  81. 81.

    Global Amphibian Assessment (Conservation International, IUCN, NatureServe, 2008).

  82. 82.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article  Google Scholar 

  83. 83.

    ArcGIS Desktop (Environmental Systems Research Institute, 2014).

  84. 84.

    Robinson, N., Regetz, J. & Guralnick, R. P. EarthEnv-DEM90: a nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS J. Photogramm. Remote Sens. 87, 57–67 (2014).

    Article  Google Scholar 

  85. 85.

    Willenbring, J. K., Codilean, A. T., Ferrier, K. L., McElroy, B. & Kirchner, J. W. Short communication: Earth is (mostly) flat, but mountains dominate global denudation: apportionment of the continental mass flux over millennial time scales, revisited. Earth Surf. Dynam. Discuss. 2, 1–17 (2014).

    Article  Google Scholar 

  86. 86.

    Fox, M., Herman, F., Willett, S. D. & May, D. A. A linear inversion method to infer exhumation rates in space and time from thermochronometric data. Earth Surf. Dynam. 2, 47–65 (2014).

  87. 87.

    Finlayson, D. P., Montgomery, D. R. & Hallet, B. Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas. Geology 30, 219–222 (2002).

    Article  Google Scholar 

  88. 88.

    Whipple, K. X. & Tucker, G. E. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. 104, 17661–17674 (1999).

    Article  Google Scholar 

  89. 89.

    Wilson, J. P. & Gallant, J. C. Terrain Analysis: Principles and Applications (John Wiley & Sons, New York, 2000).

  90. 90.

    Wobus, C. et al. Tectonics from topography: procedures, promise, and pitfalls. Geol. Soc. Spec. Papers 398, 55–74 (2006).

    Google Scholar 

  91. 91.

    Bizzi, S. & Lerner, D. N. The use of stream power as an indicator of channel sensitivity to erosion and deposition processes. River Res. Applic. 31, 16–27 (2015).

    Article  Google Scholar 

  92. 92.

    Anderson, R. S. & Anderson, S. P. Geomorphology: The Mechanics and Chemistry of Landscapes (Cambridge Univ. Press, Cambridge, 2010).

  93. 93.

    Tucker, G. E. & Whipple, K. X. Topographic outcomes predicted by stream erosion models: sensitivity analysis and intermodel comparison. J. Geophys. Res. 107, 2179 (2002).

    Article  Google Scholar 

  94. 94.

    New, M., Hulme, M. & Jones, P. Representing twentieth-century space–time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J. Climate 13, 2217–2238 (2000).

    Article  Google Scholar 

  95. 95.

    Bookhagen, B. High Resolution Spatiotemporal Distribution of Rainfall Seasonality and Extreme Events Based on a 12-year TRMM Time Series (UC Santa Barbara Geography, 2013).

  96. 96.

    Hengl, T. et al. SoilGrids1km — global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).

    Article  Google Scholar 

  97. 97.

    World Reference Base for Soil Resources, 2006: A Framework for International Classification, Correlation, and Communication (FAO, 2006).

  98. 98.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference - A Practical Information - Theoretic Approach (Springer-Verlag, New York, 2002).

  99. 99.

    Crawley, M. J. The R Book (John Wiley & Sons, Chichester, 2007).

  100. 100.

    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, 1998).

  101. 101.

    Kissling, W. D. & Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 17, 59–71 (2008).

    Article  Google Scholar 

  102. 102.

    Faurby, S. & Svenning, J.-C. Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. Diversity Distrib. 21, 1155–1166 (2015).

    Article  Google Scholar 

  103. 103.

    Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl Acad. Sci. USA 98, 4534–4539 (2001).

    Article  Google Scholar 

Download references


We thank A. Rohrmann, R. Moucha, V. Mosbrugger, F. Condamine, C. Bacon and J. Anderson for discussions and support. Funding for this work was provided by the Swedish Research Council (B0569601), the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013, ERC Grant Agreement n. 331024), the Swedish Foundation for Strategic Research, the Biodiversity and Ecosystems in a Changing Climate (BECC) programme, the Faculty of Sciences at the University of Gothenburg, the Wenner-Gren Foundations, the David Rockefeller Center for Latin American Studies at Harvard University, and a Wallenberg Academy Fellowship to A.A.; a German Science Foundation DFG grant Mu2845/6-1 and an A. Cox Fellowship (Stanford University) to A.M.; a University of Amsterdam starting grant to W.D.K.; the Universidad de Ibagué (Project 15-377-INT), the Institut de Recherche pour le Développement (IRD) for the BEST Project, and the Universidad Pedagógica y Tecnológica de Colombia (UPTC) Project SGI-2417 to M.A.B.; a Netherlands Organization for Scientific Research (NWO) grant (2012/13248/ALW) to S.G.A.F and H.H.; a German Science Foundation DFG grant (FR 3246/2-1) to S.A.F; German Science Foundation DFG grants MU 2934/2-1 and MU 2934/3-1 (PAK 807) to A.N.M.-R.; and the sFossil workshop at the Synthesis Centre for Biodiversity Sciences sDiv (DFG grant FZT 118).

Author information




C.H., A.A. and A.M. initiated the project; A.A., C.H., W.D.K. and S.G.A.F. coordinated the work and led the writing with contributions from M.A.B, A.M., A.N.M.-R., H.K., H.P.L., C.B., J.F., S.A.F., C.R., F.H. and H.H.; C.R. provided access to the bird data; S.G.A.F, M.A.B and S.A.F. compiled, cleaned and standardized all data; W.D.K. performed all analyses.

Corresponding authors

Correspondence to Alexandre Antonelli or W. Daniel Kissling or Carina Hoorn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Tables 1–5, Supplementary Figures 1–11.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antonelli, A., Kissling, W.D., Flantua, S.G.A. et al. Geological and climatic influences on mountain biodiversity. Nature Geosci 11, 718–725 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing