Role of air-mass transformations in exchange between the Arctic and mid-latitudes

Abstract

Pulses of warm and moist air from lower latitudes provide energy to the Arctic and form its main energy source outside of the summer months. These pulses can cause substantial surface warming and trigger ice melt. Air-mass transport in the opposite direction, away from the Arctic, leads to cold-air outbreaks. The outbreaks are often associated with cold extremes over continents, and extreme surface heat fluxes and occasional polar lows over oceans. Air masses advected across the strong Arctic-to-mid-latitude temperature gradient are rapidly transformed into colder and dryer or warmer and moister air masses by clouds, radiative and turbulent processes, particularly in the boundary layer. Phase changes from liquid to ice within boundary-layer clouds are critical in these air-mass transformations. The presence of liquid water determines the radiative effects of these clouds, whereas the presence of ice is crucial for subsequent cloud decay or dissipation, processes that are poorly represented in weather and climate models. We argue that a better understanding of how air masses are transformed on their way into and out of the Arctic is essential for improved prediction of weather and climate in the Arctic and mid-latitudes. Observational and modelling exercises should take an air-mass-following Lagrangian approach to attain these goals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A filament of moist air is channelled poleward and transformed to Arctic air in an intrusion event97.
Fig. 2: Air-mass transformation and the associated boundary-layer and cloud structures during a marine cold-air outbreak.

Data availability

ERA-Interim data for Fig. 1 have been obtained from the European Centre for Medium-range Weather Forecasts’ (ECMWF) data server. The satellite image in Fig. 2 is from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite, provided by the National Aeronautics and Space Administration (NASA) via https://earthdata.nasa.gov

References

  1. 1.

    Laliberté, F. et al. Constrained work output of the moist atmospheric heat engine in a warming climate. Science 347, 540–543 (2015).

    Google Scholar 

  2. 2.

    Pauluis, O., Czaja, A. & Korty, R. The global atmospheric circulation on moist isentropes. Science 321, 1075–1078 (2008).

    Google Scholar 

  3. 3.

    Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184 (2014).

    Google Scholar 

  4. 4.

    Serreze, M., Barrett, A., Stroeve, J., Kindig, D. & Holland, M. The emergence of surface-based Arctic amplification. Cryosphere 3, 11–19 (2009).

    Google Scholar 

  5. 5.

    Masson-Delmotte, V. et al. Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim. Dyn. 26, 513–529 (2006).

    Google Scholar 

  6. 6.

    Holland, M. & Bitz, C. Polar amplification of climate change in coupled models. Clim. Dyn. 21, 221–232 (2003).

    Google Scholar 

  7. 7.

    Doyle, J. G. et al. Water vapor intrusions into the High Arctic during winter. Geophys. Res. Lett. 38, L12806 (2011).

    Google Scholar 

  8. 8.

    Woods, C., Caballero, R. & Svensson, G. Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett. 40, 4717–4721 (2013).

    Google Scholar 

  9. 9.

    Liu, C. & Barnes, E. A. Extreme moisture transport into the Arctic linked to rossby wave breaking. J. Geophys. Res. Atmos. 120, 3774–3788 (2015).

    Google Scholar 

  10. 10.

    Sedlar, J. & Tjernström, M. Clouds, warm air, and a climate cooling signal over the summer Arctic. Geophys. Res. Lett. 44, 1095–1103 (2017).

    Google Scholar 

  11. 11.

    Messori, G., Woods, C. & Caballero, R. On the drivers of wintertime temperature extremes in the High Arctic. J. Climate 31, 1597–1618 (2018).

    Google Scholar 

  12. 12.

    Kapsch, M.-L., Graversen, R. G. & Tjernström, M. Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nat. Clim. Change 3, 744–748 (2013).

    Google Scholar 

  13. 13.

    Mortin, J. et al. Melt onset over Arctic sea ice controlled by atmospheric moisture transport. Geophys. Res. Lett. 43, 6636–6642 (2016).

    Google Scholar 

  14. 14.

    Solomon, A., Shupe, M. D. & Miller, N. B. Cloud-atmospheric boundary layer-surface interactions on the Greenland ice sheet during the July 2012 extreme melt event. J. Climate 30, 3237–3252 (2017).

    Google Scholar 

  15. 15.

    Wexler, H. Cooling in the lower atmosphere and the structure of polar continental air. Mon. Weather Rev. 64, 122–136 (1936).

    Google Scholar 

  16. 16.

    Curry, J. On the formation of continental polar air. J. Atmos. Sci. 40, 2278–2292 (1983).

    Google Scholar 

  17. 17.

    Morrison, H. et al. Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci. 4, 11–17 (2012).

    Google Scholar 

  18. 18.

    Shupe, M. et al. Cloud and boundary layer interactions over the Arctic sea ice in late summer. Atmos. Chem. Phys 13, 9379–9399 (2013).

    Google Scholar 

  19. 19.

    Brümmer, B. Boundary-layer modification in wintertime cold-air outbreaks from the arctic sea ice. Bound.-Layer Meteor. 80, 109–125 (1996).

    Google Scholar 

  20. 20.

    Kolstad, E. W., Bracegirdle, T. J. & Seierstad, I. A. Marine cold-air outbreaks in the north Atlantic: temporal distribution and associations with large-scale atmospheric circulation. Clim. Dyn. 33, 187–197 (2009).

    Google Scholar 

  21. 21.

    Brümmer, B. & Pohlmann, S. Wintertime roll and cell convection over Greenland and Barents sea regions: a climatology. J. Geophys. Res. Atmos. 105, 15559–15566 (2000).

    Google Scholar 

  22. 22.

    Walsh, J. E., Phillips, A. S., Portis, D. H. & Chapman, W. L. Extreme cold outbreaks in the United States and Europe, 1948-99. J. Climate 14, 2642–2658 (2001).

    Google Scholar 

  23. 23.

    Kretschmer, M. et al. More-persistent weak stratospheric polar vortex states linked to cold extremes. Bull. Am. Meteor. Soc. 99, 49–60 (2017).

    Google Scholar 

  24. 24.

    Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

    Google Scholar 

  25. 25.

    Overland, J., Wang, M. & Salo, S. The recent Arctic warm period. Tellus A 60, 589–597 (2008).

    Google Scholar 

  26. 26.

    Pithan, F., Medeiros, B. & Mauritsen, T. Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions. Clim. Dyn. 43, 289–303 (2014).

    Google Scholar 

  27. 27.

    Tomassini, L. et al. The ‘grey zone’ cold air outbreak global model intercomparison: a cross evaluation using large-eddy simulations. J. Adv. Model. Earth Sys. 9, 39–64 (2017).

    Google Scholar 

  28. 28.

    Jung, T. et al. Advancing polar prediction capabilities on daily to seasonal time scales. Bull. Am. Meteor. Soc 97, 1631–1647 (2016).

    Google Scholar 

  29. 29.

    Woods, C. & Caballero, R. The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate 29, 4473–4485 (2016).

    Google Scholar 

  30. 30.

    Gimeno, L., Nieto, R., Vázquez, M. & Lavers, D. Atmospheric rivers: a mini-review. Front. Earth Science 2, 2 (2014).

    Google Scholar 

  31. 31.

    Johansson, E., Devasthale, A., Tjernström, M., Ekman, A. M. & L’Ecuyer, T. Response of the lower troposphere to moisture intrusions into the Arctic. Geophys. Res. Lett. 44, 2527–2536 (2017).

    Google Scholar 

  32. 32.

    Tjernström, M. et al. Warm-air advection, air mass transformation and fog causes rapid ice melt. Geophys. Res. Lett. 42, 5594–5602 (2015).

    Google Scholar 

  33. 33.

    Pithan, F. et al. Select strengths and biases of models in representing the arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison. J. Adv. Model. Earth Syst. 8, 1345–1357 (2016).

    Google Scholar 

  34. 34.

    Park, D.-S. R., Lee, S. & Feldstein, S. B. Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic ocean. J. Climate 28, 4027–4033 (2015).

    Google Scholar 

  35. 35.

    Persson, P. O. G., Shupe, M. D., Perovich, D. & Solomon, A. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions. Clim. Dyn. 49, 1341–1364 (2017).

    Google Scholar 

  36. 36.

    Kapsch, M.-L., Graversen, R. G., Tjernström, M. & Bintanja, R. The effect of downwelling longwave and shortwave radiation on Arctic summer sea ice. J. Climate 29, 1143–1159 (2016).

    Google Scholar 

  37. 37.

    Nghiem, S. et al. The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 39, L20502 (2012).

    Google Scholar 

  38. 38.

    Bennartz, R. et al. July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature 496, 83–86 (2013).

    Google Scholar 

  39. 39.

    Emanuel, K. in Synoptic—Dynamic Meteorology and Weather Analysis and Forecasting (eds Bosart, L. & Bluestein, H.) 87–96 (Springer, New York, 2008).

  40. 40.

    Brooks, I. M. et al. The turbulent structure of the Arctic summer boundary layer during the Arctic summer cloud-ocean study. J. Geophys. Res. Atmos. 122, 9685–9704 (2017).

    Google Scholar 

  41. 41.

    Shupe, M. D. et al. Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteorol. Climatol. 50, 626–644 (2011).

    Google Scholar 

  42. 42.

    Solomon, A. et al. The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface layer and cloud-top inversion layer moisture sources. J. Atmos. Sci. 71, 574–595 (2014).

    Google Scholar 

  43. 43.

    Solomon, A., Feingold, G. & Shupe, M. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus. Atmos. Chem. Phys. 15, 10631–10643 (2015).

    Google Scholar 

  44. 44.

    Loewe, K. et al. Modelling micro-and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the arctic summer cloud ocean study (ASCOS). Atmos. Chem. Phys. 17, 6693–6704 (2017).

    Google Scholar 

  45. 45.

    Stevens, R. G. et al. A model intercomparison of CCN-limited tenuous clouds in the High Arctic. Atmos. Chem. Phys. 18, 11041–11071 (2017).

    Google Scholar 

  46. 46.

    Turner, J. K. & Gyakum, J. R. The development of Arctic air masses in Northwest Canada and their behaviour in a warming climate. J. Climate 24, 4818–4633 (2011).

    Google Scholar 

  47. 47.

    Cronin, T. W., Li, H. & Tziperman, E. Suppression of Arctic air formation with climate warming: investigation with a two-dimensional cloud-resolving model. J. Atmos. Sci. 74, 2717–2736 (2017).

    Google Scholar 

  48. 48.

    Shupe, M. D. & Intrieri, J. M. Cloud radiative forcing of the Arctic surface: the influence of cloud properties, surface albedo, and solar zenith angle. J. Climate 17, 616–628 (2004).

    Google Scholar 

  49. 49.

    Ovchinnikov, M. et al. Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: importance of ice size distribution assumptions. J. Adv. Model. Earth Syst. 6, 223–248 (2014).

    Google Scholar 

  50. 50.

    Sedlar, J., Shupe, M. D. & Tjernström, M. On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. J. Climate 25, 2374–2393 (2012).

    Google Scholar 

  51. 51.

    Igel, A. L. et al. The free troposphere as a potential source of Arctic boundary layer aerosol particles. Geophys. Res. Lett. 44, 7053–7060 (2017).

    Google Scholar 

  52. 52.

    Fletcher, J., Mason, S. & Jakob, C. The climatology, meteorology, and boundary layer structure of marine cold air outbreaks in both hemispheres. J. Climate 29, 1999–2014 (2016).

    Google Scholar 

  53. 53.

    Chechin, D. G. & Lüpkes, C. Bound-layer development and low-level baroclinicity during high-latitude cold-air outbreaks: a simple model. Bound.-Layer Meteor. 162, 91–116 (2017).

    Google Scholar 

  54. 54.

    Papritz, L. & Spengler, T. A lagrangian climatology of wintertime cold air outbreaks in the Irminger and Nordic seas and their role in shaping air–sea heat fluxes. J. Climate 30, 2717–2737 (2017).

    Google Scholar 

  55. 55.

    Gryschka, M., Fricke, J. & Raasch, S. On the impact of forced roll convection on vertical turbulent transport in cold air outbreaks. J. Geophys. Res. Atmos. 119, 12513–12532 (2014).

    Google Scholar 

  56. 56.

    Field, P. et al. Improving a convection-permitting model simulation of a cold air outbreak. Q. J. Roy. Meteor. Soc. 140, 124–138 (2014).

    Google Scholar 

  57. 57.

    Brümmer, B. Roll and cell convection in wintertime Arctic cold-air outbreaks. J. Atmos. Sci. 56, 2613–2636 (1999).

    Google Scholar 

  58. 58.

    Abel, S. J. et al. The role of precipitation in controlling the transition from stratocumulus to cumulus clouds in a northern hemisphere cold-air outbreak. J. Atmos. Sci. 74, 2293–2314 (2017).

    Google Scholar 

  59. 59.

    Kristovich, D. et al. The ontario winter lake-effect systems field campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Am. Meteor. Soc. 98, 315–332 (2017).

    Google Scholar 

  60. 60.

    Wang, Y., Geerts, B. & Chen, Y. Vertical structure of boundary layer convection during cold-air outbreaks at Barrow, Alaska. J. Geophys. Res. Atmos 121, 399–412 (2016).

    Google Scholar 

  61. 61.

    Marshall, J. & Schott, F. Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 1–64 (1999).

    Google Scholar 

  62. 62.

    Smedsrud, L. H. et al. The role of the Barents sea in the Arctic climate system. Rev. Geophys. 51, 415–449 (2013).

    Google Scholar 

  63. 63.

    Guest, P. S., Davidson, K. L., Overland, J. E. & Frederickson, P. A. in Arctic Oceanography: Marginal Ice Zones and Continental Shelves (eds Smith, W. O. Jr. & Grebmeir, J. M.) 51–95 (AGU, Washington DC, 1995).

  64. 64.

    Moore, G., Bromwich, D. H., Wilson, A. B., Renfrew, I. & Bai, L. Arctic system reanalysis improvements in topographically forced winds near Greenland. Q. J. Roy. Meteor. Soc 142, 2033–2045 (2016).

    Google Scholar 

  65. 65.

    Chechin, D., Lüpkes, C., Repina, I. & Gryanik, V. Idealized dry quasi 2-d mesoscale simulations of cold-air outbreaks over the marginal sea ice zone with fine and coarse resolution. J. Geophys. Res. Atmos. 118, 8787–8813 (2013).

    Google Scholar 

  66. 66.

    McInnes, H., Kristjánsson, J. E., Rahm, S., Røsting, B. & Schyberg, H. An observational study of an Arctic front during the IPY-Thorpex 2008 campaign. Q. J. Roy. Meteor. Soc. 139, 2134–2147 (2013).

    Google Scholar 

  67. 67.

    Kolstad, E. W. Extreme small-scale wind episodes over the Barents sea: when, where and why? Clim. Dyn. 45, 2137–2150 (2015).

    Google Scholar 

  68. 68.

    Sergeev, D. E., Renfrew, I. A., Spengler, T. & Dorling, S. R. Structure of a shear-line polar low. Q. J. Roy. Meteor. Soc 143, 12–26 (2017).

    Google Scholar 

  69. 69.

    DuVivier, A. et al. Winter atmospheric buoyancy forcing and oceanic response during strong wind events around southeastern Greenland in the regional Arctic system model (RASM) for 1990–2010. J. Climate 29, 975–994 (2016).

    Google Scholar 

  70. 70.

    Condron, A. & Renfrew, I. The impact of polar mesoscale storms on northeast Atlantic ocean circulation. Nat. Geosci. 6, 34–37 (2013).

    Google Scholar 

  71. 71.

    Solomon, A., Morrison, H., Persson, P. O. G., Shupe, M. D. & Bao, J.-W. Investigation of microphysical parameterizations of snow and ice in Arctic clouds during M-PACE through model-observation comparisons. Mon. Weather Rev. 137, 3110–3128 (2009).

    Google Scholar 

  72. 72.

    Bodas-Salcedo, A. et al. Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern ocean. J. Climate 29, 4213–4228 (2016).

    Google Scholar 

  73. 73.

    Konrad, C. E. & Colucci, S. J. An examination of extreme cold air outbreaks over eastern North America. Mon. Weather Rev. 117, 2687–2700 (1989).

    Google Scholar 

  74. 74.

    Ellis, A. W. & Leathers, D. J. A quantitative approach to evaluating the effects of snow cover on cold airmass temperatures across the US great plains. Weather Forecast. 13, 688–701 (1998).

    Google Scholar 

  75. 75.

    Yihui, D. Build-up, air mass transformation and propagation of siberian high and its relations to cold surge in east Asia. Meteor. Atmos. Phys. 44, 281–292 (1990).

    Google Scholar 

  76. 76.

    Iwasaki, T. et al. Isentropic analysis of polar cold airmass streams in the Northern Hemispheric winter. J. Atmos. Sci. 71, 2230–2243 (2014).

    Google Scholar 

  77. 77.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Climate 19, 5686–5699 (2006).

    Google Scholar 

  78. 78.

    Cronin, T. W. & Tziperman, E. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming. Proc. Natl Acad. Sci. USA 112, 11490–11495 (2015).

    Google Scholar 

  79. 79.

    Screen, J. A. Arctic amplification decreases temperature variance in northern mid-to high-latitudes. Nat. Clim. Change 4, 577 (2014).

    Google Scholar 

  80. 80.

    Gao, Y., Leung, L. R., Lu, J. & Masato, G. Persistent cold air outbreaks over North America in a warming climate. Environ. Res. Lett. 10, 044001 (2015).

    Google Scholar 

  81. 81.

    Kolstad, E. W. & Bracegirdle, T. J. Marine cold-air outbreaks in the future: an assessment of IPCC AR4 model results for the Northern hemisphere. Clim. Dyn. 30, 871–885 (2008).

    Google Scholar 

  82. 82.

    Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian basin of the Arctic ocean. Science 356, 285–291 (2017).

    Google Scholar 

  83. 83.

    Tetzlaff, A. et al. Brief communication: trends in sea ice extent north of Svalbard and its impact on cold air outbreaks as observed in spring 2013. Cryosphere 8, 1757–1762 (2014).

    Google Scholar 

  84. 84.

    Zahn, M. & von Storch, H. Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature 467, 309–312 (2010).

    Google Scholar 

  85. 85.

    Bony, S. et al. Clouds, circulation and climate sensitivity. Nat. Geosci. 8, 261–268 (2015).

    Google Scholar 

  86. 86.

    Curry, J. Interactions among turbulence, radiation and microphysics in Arctic stratus clouds. J. Atmos. Sci. 43, 90–106 (1986).

    Google Scholar 

  87. 87.

    Intrieri, J., Shupe, M., Uttal, T. & McCarty, B. An annual cycle of arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res. Oceans https://doi.org/10.1029/2000JC000423 (2002).

  88. 88.

    Cavallo, S. M. & Hakim, G. J. Composite structure of tropopause polar cyclones. Mon. Weather Rev. 138, 3840–3857 (2010).

    Google Scholar 

  89. 89.

    Bony, S. et al. Eurec4a: a field campaign to elucidate the couplings between clouds, convection and circulation. Surv. Geophys. 38, 1529–1568 (2017).

    Google Scholar 

  90. 90.

    Kolstad, E. W., Breiteig, T. & Scaife, A. A. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Q. J. Roy. Meteor. Soc. 136, 886–893 (2010).

    Google Scholar 

  91. 91.

    Baggett, C. & Lee, S. Arctic warming induced by tropically forced tapping of available potential energy and the role of the planetary-scale waves. J. Atmos. Sci. 72, 1562–1568 (2015).

    Google Scholar 

  92. 92.

    Park, H.-S., Lee, S., Son, S.-W., Feldstein, S. B. & Kosaka, Y. The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability. J. Climate 28, 5030–5040 (2015).

    Google Scholar 

  93. 93.

    Albrecht, B. A., Bretherton, C. S., Johnson, D., Scubert, W. H. & Frisch, A. S. The Atlantic stratocumulus transition experiment—ASTEX. Bull. Am. Meteor. Soc. 76, 889–904 (1995).

    Google Scholar 

  94. 94.

    Neggers, R. et al. Single-column model simulations of subtropical marine boundary-layer cloud transitions under weakening inversions. J. Adv. Model. Earth Sys. 9, 2385–2412 (2017).

    Google Scholar 

  95. 95.

    Goessling, H. F. et al. Paving the way for the year of polar prediction. Bull. Am. Meteor. Soc. 97, ES85–ES88 (2016).

    Google Scholar 

  96. 96.

    Hartung, K., Svensson, G., Struthers, H., Deppenmeier, A.-L. & Hazeleger, W. An EC-Earth coupled atmosphere-ocean single-column model (AOSCM) for studying coupled marine and polar processes. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2018-66 (2018).

  97. 97.

    Binder, H. et al. Exceptional air mass transport and dynamical drivers of an extreme wintertime Arctic warm event. Geophys. Res. Lett. 44, 28–36 (2017).

    Google Scholar 

  98. 98.

    Dee, D. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 137, 553–597 (2011).

    Google Scholar 

  99. 99.

    Wacker, U., Potty, K. J., Lüpkes, C., Hartmann, J. & Raschendorfer, M. A case study on a polar cold air outbreak over Fram strait using a mesoscale weather prediction model. Bound.-Layer Meteor. 117, 301–336 (2005).

    Google Scholar 

  100. 100.

    Uttal, T. et al. Surface heat budget of the Arctic ocean. Bull. Am. Meteor. Soc. 83, 255–275 (2002).

    Google Scholar 

  101. 101.

    Tjernström, M. et al. The Arctic summer cloud ocean study (ASCOS): overview and experimental design. Atmos. Chem. Phys. 14, 2823–2869 (2014).

    Google Scholar 

  102. 102.

    Physical Feedback of Arctic PBL, Sea Ice, Cloud and Aerosol (PASCAL); http://www.ac3-tr.de/news/pascal-campaign

  103. 103.

    Curry, J. et al. Fire Arctic clouds experiment. Bull. Am. Meteor. Soc. 81, 5–29 (2000).

    Google Scholar 

  104. 104.

    Arctic Mechanisms of Interaction Between the Sea and Atmosphere (AMISA, 2008); https://www.nasa.gov/centers/dryden/home/AMISA_mission_science_report.html

  105. 105.

    Arctic Cloud Observations Using Airborne Measurements During Polar Day; http://www.ac3-tr.de/overview/observations/acloud

  106. 106.

    Multidisciplinary Drifting Observatory for the Study of Arctic Climate; http://www.mosaicobservatory.org

  107. 107.

    Comble (Cold-Air Outbreaks in the Marine Boundary Layer Experiment); https://www.arm.gov/research/campaigns/amf2017comble

  108. 108.

    Wendisch, M. et al. ACRIDICON–CHUVA campaign: studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO. Bull. Am. Meteor. Soc. 97, 1885–1908 (2016).

    Google Scholar 

  109. 109.

    Laursen, K. K., Jorgensen, D. P., Brasseur, G. P., Ustin, S. L. & Huning, J. R. Hiaper: The next generation NSF/NCAR research aircraft. Bull. Am. Meteor. Soc. 87, 896–909 (2006).

    Google Scholar 

  110. 110.

    Illingworth, A. J. et al. The earthcare satellite: the next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Am. Meteor. Soc. 96, 1311–1332 (2015).

    Google Scholar 

Download references

Acknowledgements

We would like to thank all participants of the 2017 workshop on Arctic air-mass transformations in Stockholm for their contributions, and the International Meteorological Institute at Stockholm University and the Helmholtz Association for sponsoring the workshop. Parts of Fig. 2 have been adapted from https://www.mpimet.mpg.de/en/science/the-land-in-the-earth-system/modelling-of-boundary-layer-processes/les-of-cold-air-outbreaks/. We acknowledge support from the Helmholtz Society through the grant ‘Understanding the role of atmosphere-surface coupling for large-scale dynamics’ (F.P.), the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) within the Transregional Collaborative Research Center (TR 172) ‘ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3’ (D.C.,R.N. and M.W.) and from the U.S. Department of Energy (DE-SC0011918) and National Science Foundation (PLR-1303879, OPP-1724551) (M.D.S.).

Author information

Affiliations

Authors

Contributions

All authors wrote the paper, which was coordinated by F.P. and G.S. T.W.C. and D.C. produced the figures.

Corresponding author

Correspondence to Felix Pithan.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pithan, F., Svensson, G., Caballero, R. et al. Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nature Geosci 11, 805–812 (2018). https://doi.org/10.1038/s41561-018-0234-1

Download citation

Further reading