Article | Published:

Rapid transition from continental breakup to igneous oceanic crust in the South China Sea

Nature Geosciencevolume 11pages782789 (2018) | Download Citation

Abstract

Continental breakup represents the successful process of rifting and thinning of the continental lithosphere, leading to plate rupture and initiation of oceanic crust formation. Magmatism during breakup seems to follow a path of either excessive, transient magmatism (magma-rich margins) or of igneous starvation (magma-poor margins). The latter type is characterized by extreme continental lithospheric extension and mantle exhumation prior to igneous oceanic crust formation. Discovery of magma-poor margins has raised fundamental questions about the onset of ocean-floor type magmatism, and has guided interpretation of seismic data across many rifted margins, including the highly extended northern South China Sea margin. Here we report International Ocean Discovery Program drilling data from the northern South China Sea margin, testing the magma-poor margin model outside the North Atlantic. Contrary to expectations, results show initiation of Mid-Ocean Ridge basalt type magmatism during breakup, with a narrow and rapid transition into igneous oceanic crust. Coring and seismic data suggest that fast lithospheric extension without mantle exhumation generated a margin structure between the two endmembers. Asthenospheric upwelling yielding Mid-Ocean Ridge basalt-type magmatism from normal-temperature mantle during final breakup is interpreted to reflect rapid rifting within thin pre-rift lithosphere.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Peron-Pinvidic, G., Manatschal, G. & Osmundsen, P. T. Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Mar. Pet. Geol. 43, 21–47 (2013).

  2. 2.

    Tugend, J. et al. Reappraisal of the Magma-Rich versus Magma-Poor Rifted Margin Archetypes Spec. Pub. SP476.9 (Geological Society of London, 2018); https://doi.org/10.1144/SP476.9

  3. 3.

    Franke, D. Rifting, lithosphere breakup and volcanism: comparison of magma-poor and volcanic rifted margins. Mar. Pet. Geol. 43, 63–87 (2013).

  4. 4.

    Gao, J. et al. The continent–ocean transition at the mid-northern margin of the South China Sea. Tectonophysics 654, 1–19 (2015).

  5. 5.

    Lester, R. et al. Rifting and magmatism in the northeastern South China Sea from wide-angle tomography and seismic reflection imaging. J. Geophys. Res. Solid Earth 119, 2305–2323 (2014).

  6. 6.

    Holbrook, W. S. et al. Mantle thermal structure and active upwelling during continental breakup in the North Atlantic. Earth Planet. Sci. Lett. 190, 251–266 (2001).

  7. 7.

    Larsen, H. C. & Saunders, A. D. Tectonism and volcanism at the southeast greenland rifted margin: a record of plume impact and later continental rupture. In Proc. ODP Sci. Res. (eds Saunders, A. D., Larsen, L. C. & Wise, S. W. Jr) Vol. 152, Ch. 41 (ODP, 1998); https://doi.org/10.2973/odp.proc.sr.152.240.1998

  8. 8.

    Boillot, G., Winterer, E. L. & Al, E. Drilling on the galicia margin: retrospect and prospect. In Proc. ODP Sci. Res. (eds Boillot, G., Winterer, E. L. & Meyer, A. W.) Vol. 103, Ch. 45 (ODP, 1988); https://doi.org/10.2973/odp.proc.sr.103.180.1988

  9. 9.

    Minshull, T. A. Geophysical characterisation of the ocean–continent transition at magma-poor rifted margins. Comptes Rendus Geosci. 341, 382–393 (2009).

  10. 10.

    Tucholke, B. & Sibuet, J.-C. Leg 210 synthesis: tectonic, magmatic, and sedimentary evolution of the newfoundland-iberia rift. In Proc. ODP Sci. Res. (eds Tucholke, B.E., Sibuet, J.-C. & Klaus, A) Vol. 210, Ch. 1 (ODP, 2007); https://doi.org/10.2973/odp.proc.sr.210.101.2007

  11. 11.

    Whitmarsh, R. B., Manatschal, G. & Minshull, T. A. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413, 150–154 (2001).

  12. 12.

    Lizarralde, D. et al. Variation in styles of rifting in the Gulf of California. Nature 448, 466–469 (2007).

  13. 13.

    Ligi, M. et al. Birth of an ocean in the Red Sea: initial pangs. Geochem. Geophys. Geosyst. 13, Q08009 (2012).

  14. 14.

    Li, C.-F., Lin, J., Kulhanek, D. K. & Expedition 349 Scientists. Expedition 349 summary. In Proc. IODP (eds Li, C.-F., Lin, J., Kulhanek, D. K. & Expedition 349 Scientists) Vol. 349, Ch. 1 (IODP, 2015); https://doi.org/10.14379/iodp.proc.349.101.2015

  15. 15.

    Taylor, B. & Hayes, D. Origin and history of the South China Sea basin. Tecton. Geol. Evol. 27, 23–56 (1983).

  16. 16.

    Sun, Z. et al. Expedition 367/368 Scientific Prospectus: South China Sea Rifted Margin 39–106 (IODP, 2016); https://doi.org/10.14379/iodp.sp.367368.2016

  17. 17.

    Zhou, D., Ru, K. & Chen, H. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region. Tectonophysics 251, 161–177 (1995).

  18. 18.

    Ru, K. & Pigott, J. D. Episodic rifting and subsidence in the South China Sea. Am. Assoc. Pet. Geol. Bull. 70, 1136–1155 (1986).

  19. 19.

    Franke et al. The final rifting evolution in the South China Sea. Mar. Pet. Geol. 58, 704–720 (2014).

  20. 20.

    Franke, D. et al. The continent-ocean transition at the southeastern margin of the South China Sea. Mar. Pet. Geol. 28, 1187–1204 (2011).

  21. 21.

    Fan, C. et al. New insights into the magmatism in the northern margin of the South China Sea: spatial features and volume of intraplate seamounts. Geochem. Geophys. Geosyst. 18, 2216–2239 (2017).

  22. 22.

    Zhao, F. et al. Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea). Earth Planet. Sci. Lett. 445, 79–91 (2016).

  23. 23.

    Brune, S., Heine, C., Clift, P. D. & Pérez-Gussinyé, M. Rifted margin architecture and crustal rheology: reviewing Iberia–Newfoundland, Central South Atlantic, and South China Sea. Mar. Pet. Geol. 79, 257–281 (2017).

  24. 24.

    Clift, P., Lin, J. & Barckhausen, U. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea. Mar. Pet. Geol. 19, 951–970 (2002).

  25. 25.

    Clift, P. D., Brune, S. & Quinteros, J. Climate changes control offshore crustal structure at South China Sea continental margin. Earth Planet. Sci. Lett. 420, 66–72 (2015).

  26. 26.

    Briais, A., Patriat, P. & Tapponnier, P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: implications for the Tertiary tectonics of Southeast Asia. J. Geophys. Res. 98, 6299 (1993).

  27. 27.

    Li, C.-F. et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem. Geophys. Geosyst. 15, 4958–4983 (2014).

  28. 28.

    Pin, Y., Di, Z. & Zhaoshu, L. A crustal structure pro file across the northern continental margin of the South China Sea. Tectonophysics 338, 1–21 (2001).

  29. 29.

    Larsen, H. C. et al. Site U1501. In Proc. IODP (eds Sun, Z. et al.) Vol. 367/368, Ch. 5 (IODP, 2018); https://doi.org/10.14379/iodp.proc.367368.105.2018

  30. 30.

    Pinglu, L. & Chuntao, R. Tectonic characteristics and evolution history of the Pearl river mouth basin. Tectonophysics 235, 13–25 (1994).

  31. 31.

    Li, C.-F., Lin, J., Kulhanek, D. K. & Expedition 349 Scientists. Site U1435. In Proc. IODP (eds Li, C.-F., Lin, J., Kulhanek, D. K. & Expedition 349 Scientists) Vol. 349, Ch. 7 (IODP, 2015); https://doi.org/10.14379/iodp.proc.349.107.2015

  32. 32.

    Sun, Z. et al. Site U1499. In Proc. IODP (eds Sun, Z. et al.) Vol. 367/368, Ch. 3 (IODP, 2018); https://doi.org/10.14379/iodp.proc.367368.103.2018

  33. 33.

    Larsen, H. C. et al. Site U1502. In Proc. IODP (eds Sun, Z. et al.) Vol. 367/368, Ch. 6 (IODP, 2018); https://doi.org/10.14379/iodp.proc.367368.106.2018

  34. 34.

    Stock, J. M. et al. Site U1500. In Proc. IODP (eds Sun, Z. et al.) Vol. 367/368, Ch. 4 (IODP, 2018); https://doi.org/10.14379/iodp.proc.367368.104.2018

  35. 35.

    Minshull, T. A., Dean, S. M., White, R. S. & Whitmarsh, R. B. Anomalous melt production after continental break-up in the southern Iberia Abyssal Plain. Geol. Soc. Lond., Spec. Publ. 187, 537–550 (2001).

  36. 36.

    Mohn, G., Karner, G. D., Manatschal, G. & Johnson, C. A. Structural and stratigraphic evolution of the Iberia–Newfoundland hyper-extended rifted margin: a quantitative modelling approach. Geol. Soc. Lond. Spec. Pub. 413, 53–89 (2015).

  37. 37.

    White, R. & McKenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685 (1989).

  38. 38.

    Fletcher, R., Kusznir, N. & Cheadle, M. Melt initiation and mantle exhumation at the Iberian rifted margin: comparison of pure-shear and upwelling-divergent flow models of continental breakup. Comptes Rendus Geosci. 341, 394–405 (2009).

  39. 39.

    Mckenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

  40. 40.

    Bown, J. W. & White, R. S. Effect of finite extension rate on melt generation at rifted continental margins. J. Geophys. Res. Solid Earth 100, 18011–18029 (1995).

  41. 41.

    Lizarralde, D., Gaherty, J. B., Collins, J. A., Hirth, G. & Kim, S. D. Spreading-rate dependence of melt extraction at mid-ocean ridges from mantle seismic refraction data. Nature 432, 744–747 (2004).

  42. 42.

    Yu, C. et al. Deep thermal structure of Southeast Asia constrained by S-velocity data. Mar. Geophys. Res. 38, 341–355 (2017).

  43. 43.

    Sotin, C. & Parmentier, E. M. Dynamical consequences of compositional and thermal density stratification beneath spreading centers. Geophys. Res. Lett. 16, 835–838 (1989).

  44. 44.

    McKenzie, D. P. The generation and compaction of partial melts. J. Petrol. 25, 713–765 (1984).

  45. 45.

    Ohuchi, T. et al. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth’s upper mantle. Sci. Adv. 1, e1500360 (2015).

  46. 46.

    Huismans, R. & Beaumont, C. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473, 74–78 (2011).

  47. 47.

    Nissen, S. S. et al. Gravity, heat flow, and seismic constraints on the processes of crustal extension: northern margin of the South China Sea. J. Geophys. Res. 100, 22447 (1995).

  48. 48.

    Gradstein, F. M. & Ogg, J. G. in The Geologic Time Scale (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) Ch. 2, 31–42 (Elsevier, Amsterdam, 2012).

  49. 49.

    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis NOAA Tech. Memo NESDIS NGDC-24 (National Geophysical Data Center, NOAA, 2009); https://doi.org/10.1594/PANGAEA.769615

  50. 50.

    Wang, P., Prell, W. L. & Blum, P. (eds) in Proc. ODP, Init. Repts Vol. 184, Ch. 1 (ODP, 2000).

  51. 51.

    Larsen, H. C. et al. Expedition 367/368 summary. In Proc. IODP (eds Sun, Z. et al.) Vol. 367/368, Ch. 1 (IODP, 2018); https://doi.org/10.14379/iodp.proc.367368.101.2018

  52. 52.

    Seton, M. et al. Community infrastructure and repository for marine magnetic identifications. Geochem. Geophys. Geosyst. 15, 1629–1641 (2014).

  53. 53.

    Gee, J. S. & Kent, D. V. Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. Treatise Geophys. 5, 455–507 (2007).

  54. 54.

    Ishihara, T. & Kisimoto, K. Magnetic Anomaly Map of East Asia 1:4.000.000, CD-ROM (Geological survey of Japan, 1996).

  55. 55.

    Dai, Y. et al. Threshold conditions and reservoir-controlling characteristics of source kitchen in Zhu I depression, Pearl River Mouth Basin. Acta Pet. Sin. 36, 145–155 (2015).

  56. 56.

    Shi, H., He, M. & Zhang, L. Hydrocarbon geology, accumulation pattern and the next exploration strategy in the eastern Pearl River Mouth basin. China Offshore Oil Gas. 26, 11–22 (2014).

  57. 57.

    Shervais, J. W. Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett. 59, 101–118 (1982).

  58. 58.

    Sun, Z. et al. Methods. In Proc IODP (eds Sun, Z. et al.) Vol. 367/368, Ch. 2 (IODP, 2018); https://doi.org/10.14379/iodp.proc.367368.102.2018

Download references

Acknowledgements

The authors acknowledge the Chinese National Offshore Oil and Gas Company (CNOOC) for providing access for Z.S. and H.C.L. to work on their large regional database of seismic reflection data, which CNOOC subsequently amended with acquisition of new data to document our selected drill sites. The authors thank the RV JOIDES Resolution crew and the IODP technical staff. The IODP–China office supported international workshops to develop the original drilling proposal. Co-principal investigators of the drilling proposal, P. Wang and C.-F. Li, are acknowledged for their contributions to planning. This research used data and samples provided by the International Ocean Discovery Program. A.K. and C.A.-Z. acknowledge support from NSF award no. OCE-1326927. D.Z. was supported by the Korean IODP program (KIODP).

Author information

Author notes

    • A. McCarthy

    Present address: School of Earth Sciences, University of Bristol , Clifton, UK

Affiliations

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai, China

    • H. C. Larsen
    • , Z. Jian
    • , E. Huang
    • , H. Jin
    • , L. Li
    • , C. Liu
    • , Z. Liu
    • , L. Yi
    •  & G. Zhong
  2. Geological Survey of Denmark and Greenland, Copenhagen, Denmark

    • H. C. Larsen
  3. Université de Cergy-Pontoise, Laboratoire Géosciences et Environnement Cergy (GEC), Neuville-sur-Oise, France

    • G. Mohn
    •  & M. Nirrengarten
  4. CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Guangzhou, China

    • Z. Sun
    • , J. Lin
    • , N. Qiu
    • , X. Su
    • , R. Xiang
    • , C. Zhang
    •  & J. Zhang
  5. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

    • J. Stock
    •  & J. Hinojosa
  6. International Ocean Discovery Program, Texas A&M University, College Station, TX, USA

    • A. Klaus
    • , C. A. Alvarez-Zarikian
    •  & T. W. Höfig
  7. Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy

    • J. Boaga
  8. School of Geosciences, University of Aberdeen, Aberdeen, UK

    • S. A. Bowden
  9. GET, Universite de Toulouse, UMR 5563 CNRS, CmNES, IRD, Obs. Midi-Pyrenees, Toulouse, France

    • A. Briais
  10. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China

    • Y. Chen
  11. Petroleum & Marine Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, Republic of Korea

    • D. Cukur
  12. School of Geosciences, University of Sydney, Camperdown, New South Wales, Australia

    • K. Dadd
  13. Key Laboratory of Submarine Geoscience, Second Institute of Oceanography (SIO), State Oceanic Administration (SOA), Hangzhou, China

    • W. Ding
  14. Department of Geological Sciences, Brigham Young University, Provo, UT, USA

    • M. Dorais
  15. School of Geosciences, University of Louisiana at Lafayette, Lafayette, LA, USA

    • E. C. Ferré
  16. Programa de Pós-Graduação em Dinâmica dos Oceanos e da Terra da Universidade Federal Fluminense (DOT-UFF), Brazil - CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil

    • F. Ferreira
  17. Department of Geoscience, Shimane University, Matsue City, Shimane, Japan

    • A. Furusawa
  18. Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA

    • A. Gewecke
  19. JAMSTEC, Yokohama, Kanagawa, Japan

    • K. H. Hsiung
  20. Department of Geology, Peking University, Beijing, China

    • B. Huang
  21. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China

    • X. L. Huang
  22. Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou, China

    • S. Jiang
  23. Department of Geology and Geography, West Virginia University, Morgantown, WV, USA

    • B. G. Johnson
  24. GEOMAR Helmholtz Center for Ocean Research , Kiel, Germany

    • R. M. Kurzawski
    •  & F. M. van der Zwan
  25. Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

    • R. M. Kurzawski
    •  & F. M. van der Zwan
  26. Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan, China

    • C. Lei
  27. Department of Micropalaeontology, Nanjing Institute of Geology and Palaeontology, Nanjing, China

    • B. Li
  28. School of Geographical and Oceanographical Sciences, Nanjing University, Nanjing Shi, China

    • Y. Li
  29. Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

    • J. Lin
    •  & N. Zhao
  30. Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, USA

    • C. Liu
    •  & P. Persaud
  31. Department of Geology, University of South Florida, Tampa, FL, USA

    • A. J. Luna
  32. Department of Earth and Environmental Sciences, Università degli studi di Pavia, Pavia, Italy

    • C. Lupi
  33. Institute of Earth Sciences, University of Lausanne, Geopolis, Lausanne, Switzerland

    • A. McCarthy
  34. Department of Marine Geophysics, National Centre for Antarctic and Ocean Research (NCAOR), Vasco Da Gama, Goa, India

    • L. Ningthoujam
    •  & R. Yadav
  35. Faculty of Science, Graduate School of Science and Technology for Innovation, Yamaguchi-shi, Yamaguchi, Japan

    • N. Osono
  36. Earth & Environmental Sciences, University of Iowa, Iowa City, IA, USA

    • D. W. Peate
  37. School of Earth Sciences, Ohio State University, Columbus, OH, USA

    • C. Robinson
  38. Dipartimento di Ingegneria e Geologia, Università degli studi G D’Annunzio Chieti-Pescara, Chieti, Italy

    • S. Satolli
  39. Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia

    • I. Sauermilch
  40. Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany

    • J. C. Schindlbeck
  41. Department of Geology, California State University, Sacramento, CA, USA

    • S. Skinner
  42. Lamont Doherty Earth Observatory of Columbia University, Palisades, NY, USA

    • S. Straub
  43. Institute of Oceanography, National Taiwan University, Tapei, Taiwan

    • C. Su
  44. Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya City, Hanai Province, China

    • L. Tian
  45. Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong Province, China

    • S. Wan
  46. School of Ocean Sciences, China University of Geosciences, Haidian District, Beijing, China

    • H. Wu
  47. Taiwan Ocean Research Institute, NARLabs, Kaohsiung, Taiwan

    • P. S. Yu
  48. Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN, USA

    • Y. Zhang
  49. School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China

    • L. Zhong

Authors

  1. Search for H. C. Larsen in:

  2. Search for G. Mohn in:

  3. Search for M. Nirrengarten in:

  4. Search for Z. Sun in:

  5. Search for J. Stock in:

  6. Search for Z. Jian in:

  7. Search for A. Klaus in:

  8. Search for C. A. Alvarez-Zarikian in:

  9. Search for J. Boaga in:

  10. Search for S. A. Bowden in:

  11. Search for A. Briais in:

  12. Search for Y. Chen in:

  13. Search for D. Cukur in:

  14. Search for K. Dadd in:

  15. Search for W. Ding in:

  16. Search for M. Dorais in:

  17. Search for E. C. Ferré in:

  18. Search for F. Ferreira in:

  19. Search for A. Furusawa in:

  20. Search for A. Gewecke in:

  21. Search for J. Hinojosa in:

  22. Search for T. W. Höfig in:

  23. Search for K. H. Hsiung in:

  24. Search for B. Huang in:

  25. Search for E. Huang in:

  26. Search for X. L. Huang in:

  27. Search for S. Jiang in:

  28. Search for H. Jin in:

  29. Search for B. G. Johnson in:

  30. Search for R. M. Kurzawski in:

  31. Search for C. Lei in:

  32. Search for B. Li in:

  33. Search for L. Li in:

  34. Search for Y. Li in:

  35. Search for J. Lin in:

  36. Search for C. Liu in:

  37. Search for C. Liu in:

  38. Search for Z. Liu in:

  39. Search for A. J. Luna in:

  40. Search for C. Lupi in:

  41. Search for A. McCarthy in:

  42. Search for L. Ningthoujam in:

  43. Search for N. Osono in:

  44. Search for D. W. Peate in:

  45. Search for P. Persaud in:

  46. Search for N. Qiu in:

  47. Search for C. Robinson in:

  48. Search for S. Satolli in:

  49. Search for I. Sauermilch in:

  50. Search for J. C. Schindlbeck in:

  51. Search for S. Skinner in:

  52. Search for S. Straub in:

  53. Search for X. Su in:

  54. Search for C. Su in:

  55. Search for L. Tian in:

  56. Search for F. M. van der Zwan in:

  57. Search for S. Wan in:

  58. Search for H. Wu in:

  59. Search for R. Xiang in:

  60. Search for R. Yadav in:

  61. Search for L. Yi in:

  62. Search for P. S. Yu in:

  63. Search for C. Zhang in:

  64. Search for J. Zhang in:

  65. Search for Y. Zhang in:

  66. Search for N. Zhao in:

  67. Search for G. Zhong in:

  68. Search for L. Zhong in:

Contributions

H.C.L. was co-principal investigator (co-PI) for the original drilling proposal and interpretation of seismic data, co-chief scientist of expeditions 367/368, and directed the writing of the paper. G.M. is principal co-author, developed the geodynamic model jointly with H.C.L. and M.N. and was a shipboard scientist (structural geology) at expedition 368. M.N. was a shipboard scientist (structure/sedimentology) at expedition 367, carried out structural interpretation of syn-rift sedimentation, and contributed to model development and graphics. Z.S was co-PI for the original drilling proposal, interpretation of seismic data, and was co-chief scientist of expeditions 367/368. J.S. was co-chief scientist of expeditions 367/368 and co-proponent of the original drilling proposal. Z.J. was co-chief scientist of expeditions 367/368 and coordinated biostratigraphic interpretations. A.K. was expeditions 367/368 project manager. C.A.A.-Z. was expeditions 367/368 project manager and performed biostratigraphy. J.B., A.B., Y.C., M.D., A.F., J.H., T.W.H., K.H., B.H., X.H., B.J., C.Lei., L.L., Z.L., A.L., C.Lupi, A.McC., M.N., C.R., I.S., C.S., X.S., R.X., R.Y., L.Y., C.Z., J.Z., Y.Z., N.Z. and L.Z. collected the drilling data during IODP expedition 367 and participated in the writing of the paper. S.B., D.C., K.D., W.D., E.F., F.F., A.G., E.H., S.J., H.J., R.K., B.L., Y.L., J.L. (co-PI)., Chang Liu, Chuanlian Liu, L.N., N.O., D.W.P., P.P., N.Q., S.Sa., J.C.S., S.St., L.T., F.M.vdZ., S.W., H.W., P.S.Y. and G.Z. collected the drilling data during IODP expedition 368 and participated in writing of the paper. Roles on board are detailed in https://iodp.tamu.edu/scienceops/precruise/southchinasea2/participants.html.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to H. C. Larsen or G. Mohn.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-018-0198-1