Review Article | Published:

Lack of evidence for a substantial sea-level fluctuation within the Last Interglacial


During the Last Interglacial, global mean sea level reached approximately 6 to 9 m above the present level. This period of high sea level may have been punctuated by a fall of more than 4 m, but a cause for such a widespread sea-level fall has been elusive. Reconstructions of global mean sea level account for solid Earth processes and so the rapid growth and decay of ice sheets is the most obvious explanation for the sea-level fluctuation. Here, we synthesize published geomorphological and stratigraphic indicators from the Last Interglacial, and find no evidence for ice-sheet regrowth within the warm interglacial climate. We also identify uncertainties in the interpretation of local relative sea-level data that underpin the reconstructions of global mean sea level. Given this uncertainty, and taking into account our inability to identify any plausible processes that would cause global sea level to fall by 4 m during warm climate conditions, we question the occurrence of a rapid sea-level fluctuation within the Last Interglacial. We therefore recommend caution in interpreting the high rates of global mean sea-level rise in excess of 3 to 7 m per 1,000 years that have been proposed for the period following the Last Interglacial sea-level lowstand.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

  2. 2.

    Long, A. J. et al. Near-field sea-level variability in northwest Europe and ice sheet stability during the last interglacial. Quat. Sci. Rev. 126, 26–40 (2015).

  3. 3.

    Lambeck, K., Purcell, A. & Dutton, A. The anatomy of interglacial sea levels: the relationship between sea levels and ice volumes during the Last Interglacial. Earth Planet. Sci. Lett. 315, 4–11 (2012).

  4. 4.

    Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. & Oppenheimer, M. Probabilistic assessment of sea level during the last interglacial stage. Nature 462, 863–867 (2009).

  5. 5.

    Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. & Oppenheimer, M. A probabilistic assessment of sea level variations within the last interglacial stage. Geophys. J. Int. 193, 711–716 (2013).

  6. 6.

    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA 111, 15296–15303 (2014).

  7. 7.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, Cambridge, 2013).

  8. 8.

    Rohlin, E. J. et al. High rates of sea-level rise during the last interglacial period. Nat. Geosci. 1, 38–42 (2008).

  9. 9.

    Lowe, J. A. et al. UK Climate Projections Science Report: Marine and Coastal Projections (UK Climate Projections, 2009).

  10. 10.

    Dutton, A. & Lambeck, K. Ice volume and sea level during the Last Interglacial. Science 337, 216–219 (2012).

  11. 11.

    Düsterhus, A., Tamisiea, M. E. & Jevrejeva, S. Estimating the sea level highstand during the Last Interglacial: a probabilistic massive ensemble approach. Geophys. J. Int. 206, 900–920 (2016).

  12. 12.

    Mitrovica, J. X. & Peltier, W. R. On postglacial geoid subsidence over the equatorial oceans. J. Geophys. Res. 96, 20053–20071 (1991).

  13. 13.

    O’Leary, M. J. et al. Ice sheet collapse following a prolonged period of stable sea level during the last interglacial. Nat. Geosci. 6, 796–800 (2013).

  14. 14.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

  15. 15.

    Shackleton, N. J. Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev. 6, 183–190 (1987).

  16. 16.

    Dendy, S., Austermann, J., Creveling, J. R. & Mitrovica, J. X. Sensitivity of Last Interglacial sea-level high stands to ice sheet configuration during Marine Isotope Stage 6. Quat. Sci. Rev. 171, 234–244 (2017).

  17. 17.

    Rohling, E. J. Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions. Quat. Sci. Rev. 176, 1–28 (2017).

  18. 18.

    Austermann, J., Mitrovica, J. X., Huybers, P. & Rovere, A. Detection of a dynamic topography signal in last interglacial sea-level records. Sci. Adv. 3, e1700457.

  19. 19.

    Moucha, R. et al. Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth Planet. Sci. Lett. 271, 101–108 (2008).

  20. 20.

    Past Interglacials Working Group of PAGES. Interglacials of the last 800,000 years. Rev. Geophys. 54, 162–219 (2016).

  21. 21.

    Flint, R. F. Growth of North American ice sheet during the Wisconsin age. Geol. Soc. Am. Bull. 54, 325–362 (1943).

  22. 22.

    Payne, A. & Sugden, D. Topography and ice sheet growth. Earth Surf. Process. Landf. 15, 625–639 (1990).

  23. 23.

    Williams, L. D. Ice-sheet initiation and climatic influences of expanded snow cover in Arctic Canada. Quat. Res. 10, 141–149 (1978).

  24. 24.

    Williams, L. D. An energy balance model of potential glacierization of northern Canada. Arct. Antarct. Alp. Res. 11, 443–456 (1979).

  25. 25.

    Bromwich, D. H., Toracinta, E. R. & Wang, S.-H. Meteorological perspective on the initiation of the Laurentide Ice Sheet. Quat. Int. 95, 113–124 (2002).

  26. 26.

    Hughes, T. J. The marine ice transgression hypothesis. Geografiska Annaler A 69, 237–250 (1987).

  27. 27.

    Gomez, N., Mitrovica, J. X., Huybers, P. & Clark, P. U. Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nat. Geosci. 3, 850–853 (2010).

  28. 28.

    van der Wal, W., Whitehouse, P. L. & Schrama, E. J. Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica. Earth Planet. Sci. Lett. 414, 134–143 (2015).

  29. 29.

    Matsuoka, K. et al. Antarctic ice rises and rumples: their properties and significance for ice-sheet dynamics and evolution. Earth Sci. Rev. 150, 724–745 (2015).

  30. 30.

    Favier, L. & Pattyn, F. Antarctic ice rise formation, evolution, and stability. Geophys. Res. Lett. 42, 4456–4463 (2015).

  31. 31.

    Kingslake, J. et al. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. Nature 558, 430–434 (2018).

  32. 32.

    Funder, S., Kjeldsen, K. K., Kjær, K. H. & Cofaigh, C. The Greenland Ice Sheet during the past 300,000 years: a review. Dev. Quat. Sci. 15, 699–713 (2011).

  33. 33.

    Calov, R., Robinson, A., Perrette, M. & Ganopolski, A. Simulating the Greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization. Cryosphere 9, 179–196 (2015).

  34. 34.

    Robinson, A., Calov, R. & Ganopolski, A. Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial. Clim. Past. 7, 381–396 (2011).

  35. 35.

    Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006).

  36. 36.

    Helsen, M. et al. Coupled regional climate-ice-sheet simulation shows limited Greenland ice loss during the Eemian. Clim. Past. 9, 1773–1788 (2013).

  37. 37.

    van de Berg, W. J., van den Broeke, M., Ettema, J., van Meijgaard, E. & Kaspar, F. Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nat. Geosci. 4, 679–683 (2011).

  38. 38.

    MacGregor, J. A. et al. Radiostratigraphy and age structure of the Greenland Ice Sheet. J. Geophys. Res. 120, 212–241 (2015).

  39. 39.

    de Vernal, A. & Hillaire-Marcel, C. Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320, 1622–1625 (2008).

  40. 40.

    Carlson, A. E., Stoner, J. S., Donnelly, J. P. & Hillaire-Marcel, C. Response of the southern Greenland Ice Sheet during the last two deglaciations. Geology 36, 359–362 (2008).

  41. 41.

    Carlson, A. E. & Winsor, K. Northern Hemisphere ice-sheet responses to past climate warming. Nat. Geosci. 5, 607–613 (2012).

  42. 42.

    Colvill, E. J. et al. Sr-Nd-Pb isotope evidence for ice-sheet presence on southern Greenland during the Last Interglacial. Science 333, 620–623 (2011).

  43. 43.

    Reye, A. V. et al. South Greenland ice-sheet collapse during Marine Isotope Stage 11. Nature 510, 525–528 (2014).

  44. 44.

    Galaasen, E. V. et al. Rapid reductions in North Atlantic Deep Water during the peak of the last interglacial period. Science 343, 1129–1132 (2014).

  45. 45.

    Steig, E. J. et al. Influence of West Antarctic Ice Sheet collapse on Antarctic surface climate. Geophys. Res. Lett. 42, 4862–4868 (2015).

  46. 46.

    Hein, A. S. Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years. Nat. Commun. 7, 10325 (2016).

  47. 47.

    EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).

  48. 48.

    Vaughan, D. G., Barnes, D. K., Fretwell, P. T. & Bingham, R. G. Potential seaways across west Antarctica. Geochem. Geophys. Geosyst. 12, Q10004 (2011).

  49. 49.

    McKay, R. et al. Pleistocene variability of Antarctic ice sheet extent in the Ross embayment. Quat. Sci. Rev. 34, 93–112 (2012).

  50. 50.

    Cofaigh, C. O., Dowdeswell, J. A. & Pudsey, C. J. Late Quaternary iceberg rafting along the Antarctic Peninsula continental rise and in the Weddell and Scotia seas. Quat. Res. 56, 308–321 (2001).

  51. 51.

    Hillenbrand, C.-D., Fütterer, D. K., Grobe, H. & Frederichs, T. No evidence for a Pleistocene collapse of the West Antarctic Ice Sheet from continental margin sediments recovered in the Amundsen Sea. Geo. Mar. Lett. 22, 51–59 (2002).

  52. 52.

    Hillenbrand, C. D., Kuhn, G. & Frederichs, T. Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse? Quat. Sci. Rev. 28, 1147–1159 (2009).

  53. 53.

    Ackert, R. P. Jr et al. West Antarctic Ice Sheet elevations in the Ohio Range: geologic constraints and ice sheet modeling prior to the last highstand. Earth Planet. Sci. Lett. 307, 83–93 (2011).

  54. 54.

    Higgins, S., Denton, G. H. & Hendy, C. H. Glacial geomorphology of Bonney drift, Taylor Valley, Antarctica. Geografiska Annaler A 82, 365–389 (2000).

  55. 55.

    Steig, E. J. et al. Wisconsinan and Holocene climate history from an ice core at Taylor Dome, Western Ross Embayment, Antarctica. Geogr. Ann.: Ser. A. Phys. Geogr. 82, 213–235 (2000).

  56. 56.

    Hodgso, D. A. et al. Interglacial environments of coastal east Antarctica: comparison of MIS 1 (Holocene) and MIS 5e (Last Interglacial) lake-sediment records. Quat. Sci. Rev. 25, 179–197 (2006).

  57. 57.

    Bradley, S., Siddall, M., Milne, G., Masson-Delmotte, V. & Wolff, E. Where might we find evidence of a Last Interglacial West Antarctic Ice Sheet collapse in Antarctic ice core records? Glob. Planet. Change 88, 64–75 (2012).

  58. 58.

    Mengel, M. & Levermann, A. Ice plug prevents irreversible discharge from East Antarctica. Nat. Clim. Change 4, 451–455 (2014).

  59. 59.

    Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic ice sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015).

  60. 60.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

  61. 61.

    Sutter, J., Gierz, P., Grosfeld, K., Thoma, M. & Lohmann, G. Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse. Geophys. Res. Lett. 43, 2675–2682 (2016).

  62. 62.

    Capron, E. et al. Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial. Quat. Sci. Rev. 103, 116–133 (2014).

  63. 63.

    Ligtenberg, S. R. M., van de Berg, W. J., van den Broeke, M. R., Rae, J. G. L. & van Meijgaard, E. Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Clim. Dynam. 41, 867–884 (2013).

  64. 64.

    Lenaerts, J. T. M., Vizcaino, M., Fyke, J., van Kampenhout, L. & van den Broeke, M. R. Present-day and future Antarctic ice sheet climate and surface mass balance in the community Earth system model. Clim. Dynam. 47, 1367–1381 (2016).

  65. 65.

    Kleman, J. et al. North American Ice Sheet build-up during the last glacial cycle, 115–21 kyr. Quat. Sci. Rev. 29, 2036–2051 (2010).

  66. 66.

    Stokes, C. R., Tarasov, L. & Dyke, A. S. Dynamics of the North American Ice Sheet Complex during its inception and build-up to the Last Glacial Maximum. Quat. Sci. Rev. 50, 86–104 (2012).

  67. 67.

    Nicholl, J. A. L. A Laurentide outburst flooding event during the last interglacial period. Nat. Geosci. 5, 901–904 (2012).

  68. 68.

    Allard, G. et al. Constraining the age of the last interglacial–glacial transition in the Hudson Bay lowlands (Canada) using U–Th dating of buried wood. Quat. Geochron. 7, 37–47 (2012).

  69. 69.

    Spielhagen, R. F. et al. Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quat. Sci. Rev. 23, 1455–1483 (2004).

  70. 70.

    Svendsen, J. I. et al. Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev. 23, 1229–1271 (2004).

  71. 71.

    Lundqvist, J. Glacial history of Sweden. Dev. Quat. Sci. 2, 401–412 (2004).

  72. 72.

    Mangerud, J. Ice sheet limits in Norway and on the Norwegian continental shelf. Dev. Quat. Sci. 2, 271–294 (2004).

  73. 73.

    Möller, P., Alexanderson, H., Funder, S. & Hjort, C. The Taimyr Peninsula and the Severnaya Zemlya archipelago, Arctic Russia: a synthesis of glacial history and palaeo-environmental change during the Last Glacial cycle (MIS 5e–2). Quat. Sci. Rev. 107, 149–181 (2015).

  74. 74.

    Mangerud, J., Jansen, E. & Landvik, J. Y. Late Cenozoic history of the Scandinavian and Barents Sea ice sheets. Glob. Planet. Change 12, 11–26 (1996).

  75. 75.

    Sutherland, R., Kim, K., Zondervan, A. & McSaveney, M. Orbital forcing of mid-latitude Southern Hemisphere glaciation since 100 ka inferred from cosmogenic nuclide ages of moraine boulders from the Cascade Plateau, southwest New Zealand. Geo. Soc. Am. Bull. 119, 443–451 (2007).

  76. 76.

    Glasser, N. F. et al. Cosmogenic nuclide exposure ages for moraines in the Lago San Martin Valley, Argentina. Quat. Res. 75, 636–646 (2011).

  77. 77.

    Briner, J. P. & Kaufman, D. S. Late Pleistocene mountain glaciation in Alaska: key chronologies. J. Quat. Sci. 23, 659–670 (2008).

  78. 78.

    Phillips, L. Vegetational history of the Ipswichian/Eemian interglacial in Britain and continental Europe. New Phytol. 73, 589–604 (1974).

  79. 79.

    Goelzer, H., Huybrechts, P., Loutre, M. F. & Fichefet, T. Last Interglacial climate and sea-level evolution from a coupled ice sheet–climate model. Clim. Past. 12, 2195–2213 (2016).

  80. 80.

    McKay, N. P., Overpeck, J. T. & Otto‐Bliesner, B. L. The role of ocean thermal expansion in Last Interglacial sea level rise. Geophys. Res. Lett. 38, L14605 (2011).

  81. 81.

    Meehl, G. A. & Stocker, T. F. Global Climate Projections (Cambridge Univ. Press, New York, 2007).

  82. 82.

    Bauch, H. A. et al. Climatic bisection of the last interglacial warm period in the Polar North Atlantic. Quat. Sci. Rev. 30, 1813–1818 (2011).

  83. 83.

    van de Plassche, O. Sea-Level Research: A Manual for the Collection and Evaluation of Data (GeoBooks, Norwich, 1986).

  84. 84.

    Rovere, A. et al. The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: reconstructing sea-level in a warmer world. Earth Sci. Rev. 159, 404–427 (2016).

  85. 85.

    Grant, K. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).

  86. 86.

    Thompson, W. G., Curran, H. A., Wilson, M. A. & White, B. Sea-level oscillations during the last interglacial highstand recorded by Bahamas corals. Nat. Geosci. 4, 684–687 (2011).

  87. 87.

    Dutton, A. et al. Tropical tales of polar ice: evidence of last interglacial polar ice sheet retreat recorded by fossil reefs of the granitic Seychelles islands. Quat. Sci. Rev. 107, 182–196 (2015).

  88. 88.

    Hearty, P. J., Hollin, J. T., Neumann, A. C., O’Leary, M. J. & McCulloch, M. Global sea-level fluctuations during the Last Interglaciation (MIS 5e). Quat. Sci. Rev. 26, 2090–2112 (2007).

  89. 89.

    White, B., Curran, H. A. & Wilson, M. A. Bahamian coral reefs yield evidence of a brief sea-level lowstand during the last interglacial. Carbonate Evaporite 13, 10 (1998).

  90. 90.

    Hibbert, F. D. et al. Coral indicators of past sea-level change: a global repository of U-series dated benchmarks. Quat. Sci. Rev. 145, 1–56 (2016).

  91. 91.

    Chen, J. H., Curran, H. A., White, B. & Wasserburg, G. J. Precise chronology of the last interglacial period: 234U-230Th data from fossil coral reefs in the Bahamas. Geo. Soc. Am. Bull. 103, 82–97 (1991).

  92. 92.

    Muhs, D. R. & Simmons, K. R. Taphonomic problems in reconstructing sea-level history from the late Quaternary marine terraces of Barbados. Quat. Res. 88, 409–429 (2017).

  93. 93.

    Stirling, C. H. & Andersen, M. B. Uranium-series dating of fossil coral reefs: extending the sea-level record beyond the last glacial cycle. Earth Planet. Sci. Lett. 284, 269–283 (2009).

  94. 94.

    Milne, G. A. & Mitrovica, J. X. Searching for eustasy in deglacial sea-level histories. Quat. Sci. Rev. 27, 2292–2302 (2008).

  95. 95.

    Vyverberg, K. et al. Episodic reef growth in the granitic Seychelles during the Last Interglacial: implications for polar ice sheet dynamics. Mar. Geol. 399, 170–187 (2018).

  96. 96.

    Pan, T.-Y., Murray-Wallace, C. V., Dosseto, A. & Bourman, R. P. The last interglacial (MIS 5e) sea level highstand from a tectonically stable far-field setting, Yorke Peninsula, southern Australia. Mar. Geol. 398, 126–136 (2018).

  97. 97.

    Blanchon, P., Eisenhauer, A., Fietzke, J. & Liebetrau, V. Rapid sea-level rise and reef back-stepping at the close of the last interglacial highstand. Nature 458, 881–884 (2009).

  98. 98.

    Mauz, B., Shen, Z., Elmejdoub, N. & Spada, G. No evidence from the eastern Mediterranean for a MIS 5e double peak sea-level highstand. Quat. Res. 89, 505–510 (2018).

  99. 99.

    Zagwijn, W. H. Sea-level changes in the Netherlands during the Eemian. Geol. En. Mijnb. 62, 437–450 (1983).

  100. 100.

    Berger, A. & Loutre, M.-F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

  101. 101.

    Schilt, A. et al. Atmospheric nitrous oxide during the last 140,000 years. Earth Planet. Sci. Lett. 300, 33–43 (2010).

  102. 102.

    Petit, J.-R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

  103. 103.

    Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–336 (2015).

  104. 104.

    Ho, S. L. et al. Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr. Paleoceanography 27, PA4202 (2012).

  105. 105.

    Cortese, G. & Abelmann, A. Radiolarian-based paleotemperatures during the last 160 kyr at ODP Site 1089 (Southern Ocean, Atlantic Sector). Palaeogeogr. Palaeoclimatol. Palaeoecol. 182, 259–286 (2002).

  106. 106.

    Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

Download references


N.L.M.B. and A.J.L. acknowledge funding from a UK Natural Environment Research Council (NERC) grant (NE/I008675/1). E.L.M. acknowledges funding support from a Philip Leverhulme Prize (2013). P.L.W. and S.S.R.J. acknowledge NERC Independent Research Fellowships (NE/K009958/1, NE/J018333/1). This paper has been the result of a several workshops funded by the Department of Geography at Durham University. The paper is a contribution to PALSEA (an INQUA International Focus Group and a PAGES working group), the INQUA Commission on Coastal and Marine Processes, the Sea Level and Coastal Change (SLaCC) working group and the Scientific Committee on Antarctic Research SERCE and PAIS programs.

Author information

N.L.M.B. and E.L.M. conceived and led the study. P.L.W. conducted the GIA modelling. All authors contributed ideas and to the development and writing of the paper.

Competing interests

The authors declare no competing interests.

Correspondence to Natasha L. M. Barlow.

Supplementary information

  1. Supplementary Information

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Fig. 1: Probabilistic reconstruction of GMSL by Kopp et al.4 during the LIG.
Fig. 2: Selected records indicating climate changes and/or ice-sheet changes during the LIG.
Fig. 3: Theoretical mechanisms of ice-sheet growth and inception.