Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural decline in China’s CO2 emissions through transitions in industry and energy systems


As part of the Paris Agreement, China pledged to peak its CO2 emissions by 2030. In retrospect, the commitment may have been fulfilled as it was being made—China’s emissions peaked in 2013 at a level of 9.53 gigatons of CO2, and have declined in each year from 2014 to 2016. However, the prospect of maintaining the continuance of these reductions depends on the relative contributions of different changes in China. Here, we quantitatively evaluate the drivers of the peak and decline of China’s CO2 emissions between 2007 and 2016 using the latest available energy, economic and industry data. We find that slowing economic growth in China has made it easier to reduce emissions. Nevertheless, the decline is largely associated with changes in industrial structure and a decline in the share of coal used for energy. Decreasing energy intensity (energy per unit gross domestic product) and emissions intensity (emissions per unit energy) also contributed to the decline. Based on an econometric (cumulative sum) test, we confirm that there is a clear structural break in China’s emission pattern around 2015. We conclude that the decline of Chinese emissions is structural and is likely to be sustained if the nascent industrial and energy system transitions continue.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Temporal change of CO2 emissions and related indicators in China from 2000 to 2016.
Fig. 2: Contribution of each driver to the change in energy-related CO2 emissions in the periods 2007–2010, 2010–2013 and 2013–2016.
Fig. 3: Sector-specific changes from 2013 to 2016 in China.


  1. 1.

    Boden, T. A., Marland, G. & Andres, R. J. Global, Regional, and National Fossil-Fuel CO 2 Emissions (Oak Ridge National Laboratory, US Department of Energy, 2016);

  2. 2.

    Liu, Z. et al. Steps to China’s carbon peak. Nature 522, 279–281 (2015).

    Article  Google Scholar 

  3. 3.

    Wang, X. & Zhang, S. Exploring linkages among China’s 2030 climate targets. Clim. Policy 17, 458–469 (2017).

    Article  Google Scholar 

  4. 4.

    Feng, K., Davis, S. J., Sun, L. & Hubacek, K. Drivers of the US CO2 emissions 1997–2013. Nat. Commun. 6, 7714 (2015).

    Article  Google Scholar 

  5. 5.

    Jackson, R. B. et al. Reaching peak emissions. Nat. Clim. Change 6, 7–10 (2015).

    Article  Google Scholar 

  6. 6.

    Peters, G. P. et al. Key indicators to track current progress and future ambition of the Paris Agreement. Nat. Clim. Change 7, 118–122 (2017).

    Article  Google Scholar 

  7. 7.

    IPCC. IPCC Guidelines for National Greenhouse Gas Inventories (Institute for Global Environmental Strategies, 2006).

  8. 8.

    National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 1998–2016 (China Statistics Press, 1998–2017).

  9. 9.

    Mi, Z. et al. Pattern changes in determinants of Chinese emissions. Environ. Res. Lett. 12, 074003 (2017).

    Article  Google Scholar 

  10. 10.

    He, J. Analysis of CO2 emissions peak: China’s objective and strategy. Chin. J. Popul. Resour. Environ. 12, 189–198 (2014).

    Article  Google Scholar 

  11. 11.

    Green, F. & Stern, N. China’s changing economy: implications for its carbon dioxide emissions. Clim. Policy 17, 423–442 (2017).

    Article  Google Scholar 

  12. 12.

    Hubacek, K., Guan, D. & Barua, A. Changing lifestyles and consumption patterns in developing countries: a scenario analysis for China and India. Futures 39, 1084–1096 (2007).

    Article  Google Scholar 

  13. 13.

    West, J. J. et al. Co-benefits of global greenhouse gas mitigation emissions for future air quality and human health. Nat. Clim. Change 3, 885–889 (2013).

    Article  Google Scholar 

  14. 14.

    Mi, Z. et al. Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Commun. 8, 1712 (2017).

    Article  Google Scholar 

  15. 15.

    Qi, Y., Stern, N., Wu, T., Lu, J. & Green, F. China’s post-coal growth. Nat. Geosci. 9, 564–566 (2016).

    Article  Google Scholar 

  16. 16.

    Guan, D., Peters, G. P., Weber, C. L. & Hubacek, K. Journey to world top emitter: an analysis of the driving forces of China’s recent CO2 emissions surge. Geophys. Res. Lett. 36, L04709 (2009).

    Article  Google Scholar 

  17. 17.

    National Bureau of Statistics of the People’s Republic of China New Pattern of Energy Development, New Achievement of Energy Saving (National Bureau of Statistics, 2017);

  18. 18.

    Zhang, Q., He, K. & Huo, H. Policy: cleaning China’s air. Nature 484, 161–162 (2012).

    Google Scholar 

  19. 19.

    Minx, J. C. et al. A ‘carbonizing dragon’: China’s fast growing CO2 emissions revisited. Environ. Sci. Technol. 45, 9144–9153 (2011).

    Article  Google Scholar 

  20. 20.

    Edenhofer, O., Steckel, J. C., Jakob, M. & Bertram, C. Reports of coal’s terminal decline may be exaggerated. Environ. Res. Lett. 13, 024019 (2018).

    Article  Google Scholar 

  21. 21.

    Shearer, C., Ghio, N., Myllyvirta, L., Yu, A. & Nace, T. Boom and Bust: Tracking the Global Coal Plant Pipeline (CoalSwarm, Greenpeace USA, Sierra Club, 2017).

    Google Scholar 

  22. 22.

    Davis, S. J. & Socolow, R. H. Commitment accounting of CO2 emissions. Environ. Res. Lett. 9, 084018 (2014).

    Article  Google Scholar 

  23. 23.

    Seto, K. C. et al. Carbon lock-in: types, causes, and policy implications. Annu. Rev. Environ. Resour. 41, 425–452 (2016).

    Article  Google Scholar 

  24. 24.

    Guan, D., Shan, Y., Liu, Z. & He, K. Performance assessment and outlook of China’s emission-trading scheme. Engineering 2, 398–401 (2016).

    Article  Google Scholar 

  25. 25.

    Hu, A.-G. The Five-Year Plan: a new tool for energy saving and emissions reduction in China. Adv. Clim. Change Res. 7, 222–228 (2016).

    Article  Google Scholar 

  26. 26.

    International Energy Agency Coal Information 2017 (IEA, 2017);

  27. 27.

    Sheehan, P., Cheng, E., English, A. & Sun, F. China’s response to the air pollution shock. Nat. Clim. Change 4, 306–309 (2014).

    Article  Google Scholar 

  28. 28.

    Wiedenhofer, D. et al. Unequal household carbon footprints in China. Nat. Clim. Change 7, 75–80 (2017).

    Article  Google Scholar 

  29. 29.

    Hofmann, J., Guan, D., Chalvatzis, K. & Huo, H. Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China. Appl. Energy 184, 995–1003 (2016).

    Article  Google Scholar 

  30. 30.

    Zheng, H. et al. How modifications of China’s energy data affect carbon mitigation targets. Energy Policy 116, 337–343 (2018).

    Article  Google Scholar 

  31. 31.

    Jackson, R. et al. Warning signs for stabilizing global CO2 emissions. Environ. Res. Lett. 12, 110202 (2017).

    Article  Google Scholar 

  32. 32.

    Statistical Review of World Energy 2016 (British Petroleum: London, 2016).

  33. 33.

    Shan, Y. et al. Methodology and applications of city level CO2 emission accounts in China. J. Clean. Prod. 161, 1215–1225 (2017).

    Article  Google Scholar 

  34. 34.

    National Bureau of Statistics of the People’s Republic of China China Energy Statistical Yearbook (China Statistics Press, 2001–2017).

  35. 35.

    Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335–338 (2015).

    Article  Google Scholar 

  36. 36.

    Shan, Y. et al. China CO2 emission accounts 1997–2015. Sci. Data 5, 170201 (2018).

    Article  Google Scholar 

  37. 37.

    The People’s Republic of China First Biennial Update Report on Climate Change (National Development and Reform Commission, 2016);

  38. 38.

    Guan, D., Hubacek, K., Weber, C. L., Peters, G. P. & Reiner, D. M. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob. Environ. Change 18, 626–634 (2008).

    Article  Google Scholar 

  39. 39.

    Feng, K., Davis, S. J., Sun, L. & Hubacek, K. Drivers of the US CO2 emissions 1997–2013. Nat. Commun. 6, 7714 (2015).

    Article  Google Scholar 

  40. 40.

    Hoekstra, R. & Van den Bergh, J. C. Comparing structural decomposition analysis and index. Energy Econ. 25, 39–64 (2003).

    Article  Google Scholar 

  41. 41.

    Zhang, M., Mu, H., Ning, Y. & Song, Y. Decomposition of energy-related CO2 emission over 1991–2006 in China. Ecol. Econ. 68, 2122–2128 (2009).

    Article  Google Scholar 

  42. 42.

    Ma, C. & Stern, D. I. China’s changing energy intensity trend: a decomposition analysis. Energy Econ. 30, 1037–1053 (2008).

    Article  Google Scholar 

  43. 43.

    Ang, B. W. The LMDI approach to decomposition analysis: a practical guide. Energy Policy 33, 867–871 (2005).

    Article  Google Scholar 

  44. 44.

    Ang, B. W. & Liu, F. A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy 26, 537–548 (2001).

    Article  Google Scholar 

  45. 45.

    Ang, B., Zhang, F. & Choi, K.-H. Factorizing changes in energy and environmental indicators through decomposition. Energy 23, 489–495 (1998).

    Article  Google Scholar 

  46. 46.

    Ou, Y. H., Liu, Y. F. & Man, J. Y. Decomposition research of the total energy consumption of China based on LMDI. Econ. Manag. 7, 021 (2007).

    Google Scholar 

  47. 47.

    Zhang, M. & Guo, F. Analysis of rural residential commercial energy consumption in China. Energy 52, 222–229 (2013).

    Article  Google Scholar 

  48. 48.

    Meng, J. et al. The rise of South-South trade and its effect on global CO2 emissions. Nat. Commun. 9, 1871 (2018).

    Article  Google Scholar 

  49. 49.

    Liu, L., Fan, Y., Wu, G. & Wei, Y. M. Using LMDI method to analyze the change of China’s industrial CO2 emissions from final fuel use: an empirical analysis. Energy Policy 35, 5892–5900 (2007).

    Article  Google Scholar 

  50. 50.

    Kang, J. et al. A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: case study of Tianjin, China. Energy 68, 562–571 (2014).

    Article  Google Scholar 

  51. 51.

    Wang, Y., Zhu, Q. & Geng, Y. Trajectory and driving factors for GHG emissions in the Chinese cement industry. J. Clean. Prod. 53, 252–260 (2013).

    Article  Google Scholar 

  52. 52.

    Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M. & Peters, J. A. H. W. Trends in Global CO 2 Emissions: 2016 Report (European Commission, Joint Research Centre (JRC), Directorate C – Energy, Transport and Climate; PBL Netherlands Environmental Assessment Agency, 2016).

  53. 53.

    UNFCC National Inventory Submissions 2016 (UN, 2016);

  54. 54.

    Brown, R. L., Durbin, J. & Evans, J. M. Techniques for testing the constancy of regression relationships over time. J. R. Statist. Soc. B 37, 149–192 (1975).

    Google Scholar 

  55. 55.

    Ploberger, W. & Krämer, W. The CUSUM test with OLS residuals. Econometrica 60, 271–285 (1992).

    Article  Google Scholar 

  56. 56.

    Shan, Y. et al. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy 184, 742–750 (2016).

    Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (41629501, 71373153, 21521064, 91746112, 71773075, 71761137001, 41501605 and 71503168), the National Key R&D Program of China (2016YFA0602604, 2016YFC201506, 2016YFC0206202 and 2016YFA0602500), the National Social Science Foundation of China (15ZDA054), Chinese Academy of Engineering (2017-ZD-15-07), the UK Natural Environment Research Council (NE/N00714X/1 and NE/P019900/1), the Economic and Social Research Council (ES/L016028/1), a British Academy Grant (AF150310) and the Philip Leverhulme Prize.

Author information




D.G., D.M.R and S.J.D. conceived the study. D.G. led the study. Y.S. and Z.M. provided energy and emission data. J.M. performed decomposition analysis. N.Z. and S.S. performed the econometric analysis. All authors (D.G., J.M., D.M.R., N.Z., Y.S., Z.M., S.S., Z.L., Q.Z. and S.J.D.) interpreted the data and wrote the paper.

Corresponding authors

Correspondence to Dabo Guan or Shuai Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Tables

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guan, D., Meng, J., Reiner, D.M. et al. Structural decline in China’s CO2 emissions through transitions in industry and energy systems. Nature Geosci 11, 551–555 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing