An updated stress map of the continental United States reveals heterogeneous intraplate stress

Abstract

Knowledge of the state of stress in Earth’s crust is key to understanding the forces and processes responsible for earthquakes. Historically, low rates of natural seismicity in the central and eastern United States have complicated efforts to understand intraplate stress, but recent improvements in seismic networks and the spread of human-induced seismicity have greatly improved data coverage. Here, we compile a nationwide stress map based on formal inversions of focal mechanisms that challenges the idea that deformation in continental interiors is driven primarily by broad, uniform stress fields derived from distant plate boundaries. Despite plate-boundary compression, extension dominates roughly half of the continent, and second-order forces related to lithospheric structure appear to control extension directions. We also show that the states of stress in several active eastern United States seismic zones differ significantly from those of surrounding areas and that these anomalies cannot be explained by transient processes, suggesting that earthquakes are focused by persistent, locally derived sources of stress. Such spatially variable intraplate stress appears to justify the current, spatially variable estimates of seismic hazard. Future work to quantify sources of stress, stressing-rate magnitudes and their relationship with strain and earthquake rates could allow prospective mapping of intraplate hazard.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Stress indicators and seismic hazard.
Fig. 2: Stress inversions.

References

  1. 1.

    Zoback, M. L. & Zoback, M. D. State of stress in the conterminous United States. J. Geophys. Res. 85, 6113–6156 (1980).

    Article  Google Scholar 

  2. 2.

    Jones, C. H., Unruh, J. R. & Sonder, L. J. The role of gravitational potential energy in active deformation in the southwestern United States. Nature 381, 37–41 (1996).

    Article  Google Scholar 

  3. 3.

    Flesch, L. M., Holt, W. E., Haines, A. J. & Shen-Tu, B. Dynamics of the Pacific–North American plate boundary in the western United States. Science 287, 834–836 (2000).

    Article  Google Scholar 

  4. 4.

    Zoback, M. L. Stress field constraints on intraplate seismicity in eastern North America. J. Geophys. Res. 97, 11761–11782 (1992).

    Google Scholar 

  5. 5.

    Reiter, K. et al. A revised crustal stress orientation database for Canada. Tectonophysics 636, 111–124 (2014).

    Article  Google Scholar 

  6. 6.

    Stein, S. & Liu, M. Long aftershock sequences within continents and implications for earthquake hazard assessment. Nature 462, 87–89 (2009).

    Article  Google Scholar 

  7. 7.

    Ellsworth, W. L. Injection-induced earthquakes. Science 341, 1225942 (2013).

    Article  Google Scholar 

  8. 8.

    Weingarten, M. et al. High-rate injection is associate with the increase in U.S. midcontinent seismicity. Science 348, 1336–1340 (2015).

    Article  Google Scholar 

  9. 9.

    Heidbach et al. World Stress Map Database 2016 (GFZ, 2016); https://doi.org/10.5880/WSM.2016.001

  10. 10.

    England, P., Houseman, G. & Sonder, L. J. Lengthscales for continental deformation in convergent, divergent and strike-slip environments. J. Geophys. Res. 90, 3551–3557 (1985).

    Article  Google Scholar 

  11. 11.

    Silver, P. G. & Holt, W. E. The mantle flow field beneath western North America. Science 295, 1054–1057 (2002).

    Article  Google Scholar 

  12. 12.

    Humphreys, E. D. & Coblentz, D. North American dynamics and western U.S. tectonics. Rev. Geophys. 45, RG3001 (2007).

    Article  Google Scholar 

  13. 13.

    Ghosh, A. & Holt, W. E. Plate motions and stresses from global dynamic models. Science 335, 838–843 (2012).

    Article  Google Scholar 

  14. 14.

    Hurd, O. & Zoback, M. D. Intraplate earthquakes, regional stress, and fault mechanics in the central and eastern U.S. and southeastern Canada. Tectonophysics 581, 182–192 (2012).

    Article  Google Scholar 

  15. 15.

    Lund-Snee, J. E. & Zoback, M. D. State of stress in Texas: implications for induced seismicity. Geophys. Res. Lett. 43, 10208–10214 (2016).

    Article  Google Scholar 

  16. 16.

    Simpson, R. W. Quantifying Anderson’s fault types. J. Geophys. Res. 102, 17909–17919 (1997).

    Google Scholar 

  17. 17.

    Zoback, M. L. & Zoback, M. D. Tectonic stress field of the continental United States. GSA Memoir 172, 523–540 (1989).

    Google Scholar 

  18. 18.

    Gough, D. I., Fordjor, C. K. & Bell, J. S. A stress province boundary and tractions on the North American plate. Nature 305, 619–621 (1983).

    Article  Google Scholar 

  19. 19.

    Becker, T. W. et al. Western US intermountain seismicity caused by changes in upper mantle flow. Nature 524, 458–461 (2015).

    Article  Google Scholar 

  20. 20.

    Hurd, O. & Zoback, M. D. Regional stress orientations and slip compatibility of focal mechanisms in the New Madrid Seismic Zone. Seismol. Res. Lett. 83, 672–679 (2012).

    Article  Google Scholar 

  21. 21.

    Petersen, M.D. et al. Documentation of the 2014 Update of the United States National Seismic Hazard Maps USGS Open File Report 1091 (USGS, 2014).

  22. 22.

    Calais, E. et al. Triggering of New Madrid seismicity by late-Pleistocene erosion. Nature 466, 608–611 (2010).

    Article  Google Scholar 

  23. 23.

    Stein, R. The role of stress transfer in earthquake occurrence. Nature 402, 605–609 (1999).

    Article  Google Scholar 

  24. 24.

    Wesson, R. L. & Boyd, O. S. Stress before and after the 2002 Denali Fault earthquake. Geophys. Res. Lett. 34, L07303 (2007).

    Article  Google Scholar 

  25. 25.

    Mueller, K., Hough, S. E. & Bilham, R. Analysing the 1811–1812 New Madrid earthquakes with recent instrumentally recorded aftershocks. Nature 429, 284–287 (2004).

    Article  Google Scholar 

  26. 26.

    Lowry, A. R. & Pérez-Gussinyé, M. The role of crustal quartz in controlling Cordilleran deformation. Nature 471, 353–357 (2011).

    Article  Google Scholar 

  27. 27.

    Zoback, M. D. & Townend, J. Implications of hydrostatic pore pressures and high crustal strength for the deformation of continental lithosphere. Tectonophysics 336, 19–30 (2001).

    Article  Google Scholar 

  28. 28.

    Sonder, L. J. Effects of density contrasts on the orientation of stresses in the lithosphere: relation to principal stress directions in the Transverse Ranges, California. Tectonics 9, 761–771 (1990).

    Article  Google Scholar 

  29. 29.

    Forte, A. M. et al. Descent of the ancient Farallon slab drives localized mantle flow beneath the New Madrid seismic zone. Geophys. Res. Lett. 34, L04308 (2007).

    Article  Google Scholar 

  30. 30.

    Zoback, M. L. & Richardson, R. M. Stress perturbation associated with the Amazonas and other ancient rifts. J. Geophys. Res. 101, 5459–5475 (1996).

    Article  Google Scholar 

  31. 31.

    Grana, J. P. & Richardson, R. M. Tectonic stress within the New Madrid seismic zone. J. Geophys. Res. 101, 5445–5458 (1996).

    Article  Google Scholar 

  32. 32.

    Levandowski, W., Boyd, O. S. & Ramirez-Guzmán, L. Dense lower crust elevates long-term earthquake rates in the New Madrid seismic zone. Geophys. Res. Lett. 43, 8499–8510 (2016).

    Article  Google Scholar 

  33. 33.

    Biryol, C. B. et al. Relationship between observed upper mantle structure and recent tectonic activity across the southeastern United States. J. Geophys. Res. 121, 3393–3414 (2016).

    Article  Google Scholar 

  34. 34.

    Shen, W. & Ritzwoller, M. H. Crustal and uppermost mantle structure beneath the United States. J. Geophys. Res. 121, 4306–4342 (2016).

    Article  Google Scholar 

  35. 35.

    Graw, J. H., Powell, C. A. & Langston, C. A. Crustal and upper mantle velocity structure in the vicinity of the Eastern Tennessee seismic zone based upon radial P-wave transfer functions. J. Geophys. Res. 120, 243–258 (2015).

    Article  Google Scholar 

  36. 36.

    Cooley, M. T. A New Set of Focal Mechanisms and a Geodynamic Model for the Eastern Tennessee Seismic Zone. MSc thesis, Univ. Memphis (2014).

  37. 37.

    Wallace, R. E. Geometry of shearing stresses and relation to faulting. J. Geol. 59, 118–130 (1951).

    Article  Google Scholar 

  38. 38.

    Bott, M. H. P. The mechanics of oblique-slip faulting. Geol. Mag. 96, 109–117 (1959).

    Article  Google Scholar 

  39. 39.

    Varryčuk, V. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys. J. Int. 199, 69–77 (2014).

    Article  Google Scholar 

  40. 40.

    Herrmann, R. B. Moment Tensors for North America (St Louis Univ. accessed 1 January 2018); http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/MECHFIG/mech.html

  41. 41.

    Herrmann, R. B., Malagnini, L. & Munafó, I. Regional moment tensors of the 2009 L’Aquila earthquake sequence. Bull. Seismol. Soc. Am. 101, 975–993 (2011).

    Article  Google Scholar 

  42. 42.

    Wu, Q., Chapman, M. C. & Beale, J. N. The aftershock sequence of the 2011 Mineral, Virginia earthquake: temporal and spatial distribution, focal mechanisms, regional stress, and the role of Coulomb stress transfer. Bull. Seismol. Soc. Am. 105, 2521–2527 (2015).

    Article  Google Scholar 

  43. 43.

    Johnson, G. A., Horton, S. P., Withers, M. & Cox, R. Earthquake focal mechanisms in the New Madrid seismic zone. Seismol. Res. Lett. 85, 257–267 (2014).

    Article  Google Scholar 

  44. 44.

    Walsh, F. R.III & Zoback, M. D. Probabilistic assessment of potential fault slip related to injection-induced earthquakes: application to north-central Oklahoma, USA. Geology 44, 991–994 (2016).

    Article  Google Scholar 

  45. 45.

    Chapman, M. C. et al. A statistical analysis of earthquake focal mechanisms and epicenter locations in the Eastern Tennessee Seismic Zone. Bull. Seismol. Soc. Am. 87, 1522–1536 (1997).

    Google Scholar 

  46. 46.

    Martinez-Garzón, P. J. et al. Sensitivity of stress inversion of focal mechanisms to pore pressure changes. Geophys. Res. Lett. 43, 8441–8450 (2016).

    Article  Google Scholar 

  47. 47.

    Haeussler, P. J. et al. Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 Novermber 2002 M7.9 earthquake, Alaska. Bull. Seismol. Soc. Am. 94, S23–S52 (2004).

    Article  Google Scholar 

  48. 48.

    Hreinsd¢ttir, S. et al. Coseismic deformation of the 2002 Denali fault earthquake: insights from GPS measurements. J. Geophys. Res. 111, B03308 (2006).

    Google Scholar 

  49. 49.

    Chapman, M. C. et al. Modern seismicity and the fault responsible for the 1886 Charleston, South Carolina, earthquake. Bull. Seismol. Soc. Am. 106, 364–372 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

J. Hardebeck, M. Zoback and M. L. Zoback provided helpful comments and discussions during preparation of this manuscript. W.L. was funded by the USGS Mendenhall Postdoctoral Fellowship and Earthquake Hazards Program.

Author information

Affiliations

Authors

Contributions

W.L. managed catalogue compilation, stress inversions, figure generation and manuscript preparation. R.B.H. generated a plurality of the focal mechanisms and aided in the uncertainty analysis for individual data. All authors collaborated on figure generation, drafting and hypothesis testing.

Corresponding author

Correspondence to Will Levandowski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary description, figures, tables, and README file

Supplementary Dataset 1

Focal mechanism database

Supplementary Dataset 2

Results shown in Fig. 2c

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levandowski, W., Herrmann, R.B., Briggs, R. et al. An updated stress map of the continental United States reveals heterogeneous intraplate stress. Nature Geosci 11, 433–437 (2018). https://doi.org/10.1038/s41561-018-0120-x

Download citation

Further reading