Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes


The Mesoproterozoic era (1,600–1,000 million years ago (Ma)) has long been considered a period of relative environmental stasis, with persistently low levels of atmospheric oxygen. There remains much uncertainty, however, over the evolution of ocean chemistry during this period, which may have been of profound significance for the early evolution of eukaryotic life. Here we present rare earth element, iron-speciation and inorganic carbon isotope data to investigate the redox evolution of the 1,600–1,550 Ma Yanliao Basin, North China Craton. These data confirm that the ocean at the start of the Mesoproterozoic was dominantly anoxic and ferruginous. Significantly, however, we find evidence for a progressive oxygenation event starting at ~1,570 Ma, immediately prior to the occurrence of complex multicellular eukaryotes in shelf areas of the Yanliao Basin. Our study thus demonstrates that oxygenation of the Mesoproterozoic environment was far more dynamic and intense than previously envisaged, and establishes an important link between rising oxygen and the emerging record of diverse, multicellular eukaryotic life in the early Mesoproterozoic.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Summary of sedimentary facies (SF) and geochemical signals for carbonates from the Gaoyuzhuang Formation, Jixian Section.
Fig. 2: Compilation of inorganic carbon isotope (δ13Ccarb) data for the Gaoyuzhuang Formation across the Yanliao Basin.
Fig. 3: Depiction of the redox evolution in the early Mesoproterozoic Yanliao Sea.


  1. 1.

    Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101–1104 (2008).

    Article  Google Scholar 

  2. 2.

    Knoll, A. H., Javaux, E. J., Hewitt, D. & Cohen, P. Eukaryotic organisms in Proterozoic oceans. Philos. Trans. R. Soc. Lond. B 361, 1023–1038 (2006).

    Article  Google Scholar 

  3. 3.

    Agić, H., Moczydłowska, M. & Yin, L. Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton—a window into the early eukaryote evolution. Precambrian Res. 297, 101–130 (2017).

    Article  Google Scholar 

  4. 4.

    Javaux, E. J., Knoll, A. H. & Walter, M. R. Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412, 66–69 (2001).

    Article  Google Scholar 

  5. 5.

    Vorob’eva, N. G., Sergeev, V. N. & Petrov, P. Y. Kotuikan Formation assemblage: a diverse organic-walled microbiota in the Mesoproterozoic Anabar succession, northern Siberia. Precambrian Res. 256, 201–222 (2015).

    Article  Google Scholar 

  6. 6.

    Zhu, S. et al. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China. Nat. Commun. 7, 11500 (2016).

    Article  Google Scholar 

  7. 7.

    Summons, R. E., Bradley, A. S., Jahnke, L. L. & Waldbauer, J. R. Steroids, triterpenoids and molecular oxygen. Philos. Trans. R. Soc. Lond. B 361, 951–968 (2006).

    Article  Google Scholar 

  8. 8.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  Google Scholar 

  9. 9.

    Planavsky, N. J. et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).

    Article  Google Scholar 

  10. 10.

    Zhang, S. et al. Sufficient oxygen for animal respiration 1,400 million years ago. Proc. Natl Acad. Sci. USA 113, 1731–1736 (2016).

    Article  Google Scholar 

  11. 11.

    Daines, S. J., Mills, B. J. & Lenton, T. M. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat. Commun. 8, 14379 (2017).

    Article  Google Scholar 

  12. 12.

    Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3, 486–490 (2010).

    Article  Google Scholar 

  13. 13.

    Planavsky, N. J. et al. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477, 448–451 (2011).

    Article  Google Scholar 

  14. 14.

    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Article  Google Scholar 

  15. 15.

    Wang, X. et al. Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting. Am. J. Sci. 317, 861–900 (2017).

    Article  Google Scholar 

  16. 16.

    Sperling, E. A. et al. Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. Geobiology 12, 373–386 (2014).

    Article  Google Scholar 

  17. 17.

    Luo, G. et al. Shallow stratification prevailed for ~1700 to ~1300 Ma ocean: evidence from organic carbon isotopes in the North China Craton. Earth Planet. Sci. Lett. 400, 219–232 (2014).

    Article  Google Scholar 

  18. 18.

    Tang, D., Shi, X., Wang, X. & Jiang, G. Extremely low oxygen concentration in mid-Proterozoic shallow seawaters. Precambrian Res. 276, 145–157 (2016).

    Article  Google Scholar 

  19. 19.

    Guo, H. et al. Sulfur isotope composition of carbonate-associated sulfate from the Mesoproterozoic Jixian Group, North China: implications for the marine sulfur cycle. Precambrian Res. 266, 319–336 (2015).

    Article  Google Scholar 

  20. 20.

    Mei, M. Preliminary study on sequence-stratigraphic position and origin for molar-tooth structure of the Gaoyuzhuang Formation of Mesoproterozoic at Jixian section in Tianjin. J. Palaeogeogr. 7, 437–447 (2005).

    Google Scholar 

  21. 21.

    Tian, H. et al. Zircon LA-MC-ICPMS U–Pb dating of tuff from Mesoproterozoic Gaoyuzhuang Formation in Jixian Country of North China and its geological significance. Acta Geosci. Sin. 36, 647–658 (2015).

    Google Scholar 

  22. 22.

    Li, H. et al. Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton. Acta Petrol. Sin. 26, 2131–2140 (2010).

    Google Scholar 

  23. 23.

    Michard, A., Albarède, F., Michard, G., Minster, J. F. & Charlou, J. L. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 °N). Nature 303, 795–797 (1983).

    Article  Google Scholar 

  24. 24.

    Sholkovitz, E. R., Landing, W. M. & Lewis, B. L. Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochim. Cosmochim. Acta. 58, 1567–1579 (1994).

    Article  Google Scholar 

  25. 25.

    Cantrell, K. J. & Byrne, R. H. Rare earth element complexation by carbonate and oxalate ions. Geochim. Cosmochim. Acta. 51, 597–605 (1987).

    Article  Google Scholar 

  26. 26.

    Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 123, 323–333 (1996).

    Article  Google Scholar 

  27. 27.

    Nozaki, Y., Zhang, J. & Amakawa, H. The fractionation between Y and Ho in marine environment. Earth Planet. Sci. Lett. 148, 329–340 (1997).

    Article  Google Scholar 

  28. 28.

    Bau, M. & Koschinsky, A. Oxidative scavenging of cerium on hydrous Fe oxides: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochem. J. 43, 37–47 (2009).

    Article  Google Scholar 

  29. 29.

    German, C. R., Holliday, B. P. & Elderfield, H. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochim. Cosmochim. Acta. 55, 3553–3558 (1991).

    Article  Google Scholar 

  30. 30.

    Bau, M., Moller, P. & Dulski, P. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Mar. Chem. 56, 123–131 (1997).

    Article  Google Scholar 

  31. 31.

    Tostevin, R. et al. Low-oxygen waters limited habitable space for early animals. Nat. Commun. 7, 12818 (2016).

    Article  Google Scholar 

  32. 32.

    Nothdurft, L. D., Webb, G. E. & Kamber, B. S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochim. Cosmochim. Acta. 68, 263–283 (2004).

    Article  Google Scholar 

  33. 33.

    Banner, J. L., Hanson, G. N. & Meyers, W. J. Rare earth elements and Nd isotopic variations in regionally extensive dolomites from the Burlington–Keokuk Formation (Mississippian): implications for REE mobility during carbonate diagenesis. J. Sediment. Petrol. 58, 415–432 (1988).

    Article  Google Scholar 

  34. 34.

    Zhang, K., Zhu, X. & Yan, B. A refined dissolution method for rare earth element studies of bulk carbonate rocks. Chem. Geol. 412, 82–91 (2015).

    Article  Google Scholar 

  35. 35.

    Poulton, S. W., Frallck, P. W. & Canfield, D. E. The transition to a sulphidic ocean ~1.84 billion years ago. Nature 431, 173–177 (2004).

    Article  Google Scholar 

  36. 36.

    Clarkson, M. O. et al. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nat. Commun. 7, 12236 (2016).

    Article  Google Scholar 

  37. 37.

    Wood, R. A. et al. Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia. Precambrian Res. 261, 252–271 (2015).

    Article  Google Scholar 

  38. 38.

    Clarkson, M. O., Poulton, S. W., Guilbaud, R. & Wood, R. A. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. Chem. Geol. 382, 111–122 (2014).

    Article  Google Scholar 

  39. 39.

    Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).

    Article  Google Scholar 

  40. 40.

    Poulton, S. W. & Raiswell, R. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805 (2002).

    Article  Google Scholar 

  41. 41.

    Raiswell, R. & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219–245 (1998).

    Article  Google Scholar 

  42. 42.

    Ling, H. et al. Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater. Precambrian Res. 225, 110–127 (2013).

    Article  Google Scholar 

  43. 43.

    Li, R., Chen, J., Zang, S. & Chen, Z. Secular variations in carbon isotopic compositions of carbonates from Proterozoic successions in the Ming Tombs Section of the North China Platform. J. Asian Earth Sci. 22, 329–341 (2003).

    Article  Google Scholar 

  44. 44.

    Guo, H. et al. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China: implications for biological and oceanic evolution. Precambrian Res. 224, 169–183 (2013).

    Article  Google Scholar 

  45. 45.

    Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).

    Article  Google Scholar 

Download references


This work was supported by NSFC Grant 41430104 and CAGS Research Fund YYWF201603 to X.K.Z., a China Scholarship Council award to K.Z. and a China Geological Survey Grant DD20160120-04 to B. Yan. S.W.P. acknowledges support from a Royal Society Wolfson Research Merit Award. We thank L. Gao and P. Liu for field guidance, and F. Shi, C. Tang, X. Peng, C. Pan, N. Zhao, C. Bao, Z. Zhou, F. Zhang and Y. Guo for field-work assistance. We acknowledge F. Xu and M. Lv for assistance in the elemental analysis, Y. Xiong for help with the Fe-speciation experiments, Y. Shen, K. Chen and W. Huang for carbon isotope analyses and F. Bowyer for assistance with cathodoluminescence. We also express our thanks to J. Li, D. Li, Y. He, J. Ma, X. Zou and K. Du for logistical support.

Author information




X.K.Z. designed the project. X.K.Z., K.Z., Y.S. and Z.F.G. did the fieldwork and collected samples. K.Z. carried out the elemental and Fe-speciation analyses. R.A.W. provided expertise in the evaluation of carbonate diagenesis. X.K.Z., K.Z. and S.W.P. interpreted the data, and K.Z., S.W.P. and X.K.Z. wrote the paper, with additional input from all the co-authors.

Corresponding author

Correspondence to Xiangkun Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information

Supplementary Data Tables

Supplementary Data Tables

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Zhu, X., Wood, R.A. et al. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nature Geosci 11, 345–350 (2018).

Download citation

Further reading


Quick links