Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A post-Cassini view of Titan’s methane-based hydrologic cycle

Abstract

The methane-based hydrologic cycle on Saturn’s largest moon, Titan, is an extreme analogue to Earth’s water cycle. Titan is the only planetary body in the Solar System, other than Earth, that is known to have an active hydrologic cycle. With a surface pressure of 1.5 bar and temperatures of 90 to 95 K, methane and ethane condense out of a nitrogen-based atmosphere and flow as liquids on the moon’s surface. Exchange processes between atmospheric, surface and subsurface reservoirs produce methane and ethane cloud systems, as well as erosional and depositional landscapes that have strikingly similar forms to their terrestrial counterparts. Over its 13-year exploration of the Saturn system, the Cassini–Huygens mission revealed that Titan’s hydrocarbon-based hydrology is driven by nested methane cycles that operate over a range of timescales, including geologic, orbital (for example, Croll–Milankovitch cycles), seasonal and that of a single convective storm. In this Review Article, we describe the dominant exchange processes that operate over these timescales and present a post-Cassini view of Titan’s methane-based hydrologic system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Exploration and research milestones.
Fig. 2: Titan’s hydrologic cycle in action.
Fig. 3: Bathymetry of Titan’s lakes and seas.
Fig. 4: Schematic view of Titan’s hydrologic cycle, including order of magnitude estimates for timescales of the various exchange processes.

References

  1. 1.

    Lunine, J. I., Stevenson, D. J. & Yung, Y. L. Ethane ocean on Titan. Science 222, 1229–1230 (1983).

    Article  Google Scholar 

  2. 2.

    Toon, O. B., Mckay, C. P., Courtin, R. & Ackerman, T. P. Methane rain on Titan. Icarus 75, 255–284 (1988).

    Article  Google Scholar 

  3. 3.

    Flasar, F. M. Oceans on Titan. Science 221, 55–57 (1983).

    Article  Google Scholar 

  4. 4.

    Lindal, G. F. et al. The atmosphere of Titan – an analysis of the Voyager-1 radio occultation measurements. Icarus 53, 348–363 (1983).

    Article  Google Scholar 

  5. 5.

    Lellouch, E. et al. Titans atmosphere and hypothesized ocean – a reanalysis of the Voyager-1 radio-occultation and Iris 7.7-micron data. Icarus 79, 328–349 (1989).

    Article  Google Scholar 

  6. 6.

    Yung, Y. L., Allen, M. & Pinto, J. P. Photochemistry of the atmosphere of Titan – comparison between model and observations. Astrophys. J. Suppl. Ser. 55, 465–506 (1984).

    Article  Google Scholar 

  7. 7.

    Lorenz, R. D. & Lunine, J. I. Erosion on Titan: past and present. Icarus 122, 79–91 (1996).

    Article  Google Scholar 

  8. 8.

    Mckay, C. P., Pollack, J. B. & Courtin, R. The thermal structure of Titans atmosphere. Icarus 80, 23–53 (1989).

    Article  Google Scholar 

  9. 9.

    Lorenz, R. D. Planetary science - the weather on Titan. Science 290, 467–468 (2000).

    Article  Google Scholar 

  10. 10.

    Leovy, C. B. & Pollack, J. B. First look at atmospheric dynamics and temperature variations on Titan. Icarus 19, 195–201 (1973).

    Article  Google Scholar 

  11. 11.

    Brown, M. E., Roberts, J. E. & Schaller, E. L. Clouds on Titan during the Cassini prime mission: a complete analysis of the VIMS data. Icarus 205, 571–580 (2010).

    Article  Google Scholar 

  12. 12.

    Mitchell, J. L. The drying of Titan’s dunes: Titan’s methane hydrology and its impact on atmospheric circulation. J. Geophys. Res. Planets https://doi.org/10.1029/2007je003017 (2008).

    Article  Google Scholar 

  13. 13.

    Mitchell, J. L. & Lora, J. M. The Climate of Titan. Annu. Rev. Earth Planet. Sci. 44, 353–380 (2016).

    Article  Google Scholar 

  14. 14.

    Griffith, C. A., Owen, T., Miller, G. A. & Geballe, T. Transient clouds in Titan’s lower atmosphere. Nature 395, 575–578 (1998).

    Article  Google Scholar 

  15. 15.

    Roe, H. G., de Pater, I., Macintosh, B. A. & McKay, C. P. Titan’s clouds from gemini and keck adaptive optics imaging. Astrophys. J. 581, 1399–1406 (2002).

    Article  Google Scholar 

  16. 16.

    Brown, M. E., Bouchez, A. H. & Griffith, C. A. Direct detection of variable tropospheric clouds near Titan’s south pole. Nature 420, 795–797 (2002).

    Article  Google Scholar 

  17. 17.

    Gibbard, S. G. et al. Speckle imaging of Titan at 2 microns: surface albedo, haze optical depth, and tropospheric clouds 1996–1998. Icarus 169, 429–439 (2004).

    Article  Google Scholar 

  18. 18.

    Rannou, P., Montmessin, F., Hourdin, F. & Lebonnois, S. The latitudinal distribution of clouds on Titan. Science 311, 201–205 (2006).

    Article  Google Scholar 

  19. 19.

    Schaller, E. L., Brown, M. E., Roe, H. G., Bouchez, A. H. & Trujillo, C. A. Dissipation of Titan’s south polar clouds. Icarus 184, 517–523 (2006).

    Article  Google Scholar 

  20. 20.

    Rodriguez, S. et al. Titan’s cloud seasonal activity from winter to spring with Cassini/VIMS. Icarus 216, 89–110 (2011).

    Article  Google Scholar 

  21. 21.

    Porco, C. C. et al. Imaging of Titan from the Cassini spacecraft. Nature 434, 159–168 (2005).

    Article  Google Scholar 

  22. 22.

    Hirtzig, M. et al. Monitoring atmospheric phenomena on Titan. Astron. Astrophys. 456, 761–774 (2006).

    Article  Google Scholar 

  23. 23.

    Niemann, H. B. et al. The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438, 779–784 (2005).

    Article  Google Scholar 

  24. 24.

    Griffith, C. A. et al. The evolution of Titan’s mid-latitude clouds. Science 310, 474–477 (2005).

    Article  Google Scholar 

  25. 25.

    Griffith, C. A. et al. Characterization of clouds in Titan’s tropical atmosphere. Atrophys. J. Lett. 702, L105–L109 (2009).

    Article  Google Scholar 

  26. 26.

    Schaller, E. L., Roe, H. G., Schneider, T. & Brown, M. E. Storms in the tropics of Titan. Nature 460, 873–875 (2009).

    Article  Google Scholar 

  27. 27.

    Ádámkovics, M., Barnes, J. W., Hartung, M. & de Pater, I. Observations of a stationary mid-latitude cloud system on Titan. Icarus 208, 868–877 (2010).

    Article  Google Scholar 

  28. 28.

    Niemann, H. B. et al. Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res. Planets 115, E12006 (2010).

    Article  Google Scholar 

  29. 29.

    Turtle, E. P. et al. Rapid and extensive surface changes near Titan’s equator: evidence of April showers. Science 331, 1414 (2011).

    Article  Google Scholar 

  30. 30.

    Griffith, C. A. et al. Evidence for a polar ethane cloud on Titan. Science 313, 1620 (2006).

    Article  Google Scholar 

  31. 31.

    Adamkovics, M. et al. Meridional variation in tropospheric methane on Titan observed with AO spectroscopy at Keck and VLT. Icarus 270, 376–388 (2016).

    Article  Google Scholar 

  32. 32.

    Lora, J. M. & Ádámkovics, M. The near-surface methane humidity on Titan. Icarus 286, 270–279 (2017).

    Article  Google Scholar 

  33. 33.

    Turtle, E. P. et al. Cassini imaging of Titan’s high-latitude lakes, clouds, and south-polar surface changes. Geophys. Res. Lett. 36, L02204 (2009).

    Article  Google Scholar 

  34. 34.

    Tomasko, M. G. et al. Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature 438, 765–778 (2005).

    Article  Google Scholar 

  35. 35.

    Stofan, E. R. et al. The lakes of Titan. Nature 445, 61–64 (2007).

    Article  Google Scholar 

  36. 36.

    Hayes, A. et al. Hydrocarbon lakes on Titan: distribution and interaction with a porous regolith. Geophys. Res. Lett. 35, L09204 (2008).

    Article  Google Scholar 

  37. 37.

    Hayes, A. G. The lakes and seas of Titan. Annu. Rev. Earth Planet. Sci. 44, 57–83 (2016).

    Article  Google Scholar 

  38. 38.

    Hayes, A. G. et al. Bathymetry and absorptivity of Titan’s Ontario Lacus. J. Geophys. Res. Planets 115, E003557 (2010).

    Article  Google Scholar 

  39. 39.

    Hayes, A. G. et al. Transient surface liquid in Titan’s polar regions from Cassini. Icarus 211, 655–671 (2011).

    Article  Google Scholar 

  40. 40.

    Birch, S. P. D. et al. Morphological evidence that Titan’s southern hemisphere basins are paleoseas. Icarus https://doi.org/10.1016/j.icarus.2017.12.016 (2018).

    Article  Google Scholar 

  41. 41.

    Moore, J. M. & Howard, A. D. Are the basins of Titan’s Hotei Regio and Tui Regio sites of former low latitude seas? Geophys. Res. Lett. 38, L04201 (2011).

    Article  Google Scholar 

  42. 42.

    Barnes, J. W. et al. Cassini observations of flow-like features in western Tui Regio, Titan. Geophys. Res. Lett. 33, L16204 (2006).

    Article  Google Scholar 

  43. 43.

    Wall, S. D. et al. Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: evidence for geologically recent cryovolcanic activity. Geophys. Res. Lett. 36, L04203 (2009).

    Article  Google Scholar 

  44. 44.

    Lopes, R. M. C. et al. Cryovolcanism on Titan: new results from Cassini RADAR and VIMS. J. Geophys. Res. Planets 118, 416–435 (2013).

    Article  Google Scholar 

  45. 45.

    Griffith, C. A. et al. Possible tropical lakes on Titan from observations of dark terrain. Nature 486, 237–239 (2012).

    Article  Google Scholar 

  46. 46.

    Vixie, G. et al. Possible temperate lakes on Titan. Icarus 257, 313–323 (2015).

    Article  Google Scholar 

  47. 47.

    Wye, L. C., Zebker, H. A. & Lorenz, R. D. Smoothness of Titan’s Ontario Lacus: constraints from Cassini RADAR specular reflection data. Geophys. Res. Lett. 36, L16201 (2009).

    Article  Google Scholar 

  48. 48.

    Zebker, H. et al. Surface of Ligeia Mare, Titan, from Cassini altimeter and radiometer analysis. Geophys. Res. Lett. 41, 308–313 (2014).

    Article  Google Scholar 

  49. 49.

    Stephan, K. et al. Specular reflection on Titan: liquids in Kraken Mare. Geophys. Res. Lett. 37, L07104 (2010).

    Article  Google Scholar 

  50. 50.

    Grima, C. et al. Surface roughness of Titan’s hydrocarbon seas. Earth Planet. Sci. Lett. 474, 20–24 (2017).

    Article  Google Scholar 

  51. 51.

    Barnes, J. et al. Cassini/VIMS observes rough surfaces on Titan’s Punga Mare in specular reflection. Planet. Sci. https://doi.org/10.1186/s13535-014-0003-4 (2014).

    Article  Google Scholar 

  52. 52.

    Hofgartner, J. D. et al. Transient features in a Titan sea. Nat. Geosci. 7, 493–496 (2014).

    Article  Google Scholar 

  53. 53.

    Lorenz, R. D. & Hayes, A. G. The growth of wind-waves in Titan’s hydrocarbon seas. Icarus 219, 468–475 (2012).

    Article  Google Scholar 

  54. 54.

    Hayes, A. G. et al. Wind driven capillary-gravity waves on Titan?s lakes: hard to detect or non-existent? Icarus 225, 403–412 (2013).

    Article  Google Scholar 

  55. 55.

    Mastrogiuseppe, M. et al. The bathymetry of a Titan sea. Geophys. Res. Lett. 41, 1432–1437 (2014).

    Article  Google Scholar 

  56. 56.

    Mastrogiuseppe, M. et al. Bathymetry and composition of Titan’s Ontario Lacus derived from Monte Carlo-based waveform inversion of Cassini RADAR altimetry data. Icarus 300, 203–209 (2017).

    Article  Google Scholar 

  57. 57.

    Mastrogiuseppe, M. et al. Radar sounding using the Cassini altimeter: waveform modeling and Monte Carlo approach for data inversion of observations of Titan’s seas. IEEE Trans. Geosci. Remote Sens 54, 5646–5656 (2016).

    Article  Google Scholar 

  58. 58.

    Lorenz, R. D. et al. Titan’s inventory of organic surface materials. Geophys. Res. Lett. 35, L02206 (2008).

    Article  Google Scholar 

  59. 59.

    Lorenz, R. D. et al. A radar map of Titan seas: tidal dissipation and ocean mixing through the throat of Kraken. Icarus 237, 9–15 (2014).

    Article  Google Scholar 

  60. 60.

    Mitchell, K. L., Barmatz, M. B., Jamieson, C. S., Lorenz, R. D. & Lunine, J. I. Laboratory measurements of cryogenic liquid alkane microwave absorptivity and implications for the composition of Ligeia Mare, Titan. Geophys. Res. Lett. 42, 1340–1345 (2015).

    Article  Google Scholar 

  61. 61.

    Glein, C. R. & Shock, E. L. A geochemical model of non-ideal solutions in the methane-ethane-propane-nitrogen-acetylene system on Titan. Geochim. Cosmochim. Ac. 115, 217–240 (2013).

    Article  Google Scholar 

  62. 62.

    Tan, S. P. et al. Titan’s liquids: exotic behavior and its implications on global fluid circulation. Icarus 250, 64–75 (2015).

    Article  Google Scholar 

  63. 63.

    Brown, R. H. et al. The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454, 607–610 (2008).

    Article  Google Scholar 

  64. 64.

    Lunine, J. I. & Atreya, S. K. The methane cycle on Titan. Nat. Geosci. 1, 159–164 (2008).

    Article  Google Scholar 

  65. 65.

    Lunine, J. I. & Horst, S. M. Organic chemistry on the surface of Titan. Rend. Fis. Acc. Lincei 22, 183–189 (2011).

    Article  Google Scholar 

  66. 66.

    Vinatier, S. et al. Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission: I. Hydrocarbons, nitriles and CO2 vertical mixing ratio profiles. Icarus 205, 559–570 (2010).

    Article  Google Scholar 

  67. 67.

    Wilson, E. H. & Atreya, S. K. Titan’s carbon budget and the case of the missing ethane. J. Phys. Chem. A 113, 11221–11226 (2009).

    Article  Google Scholar 

  68. 68.

    Lavvas, P. P., Coustenis, A. & Vardavas, I. M. Coupling photochemistry with haze formation in Titan’s atmosphere, part I: model description. Planet. Space Sci. 56, 27–66 (2008).

    Article  Google Scholar 

  69. 69.

    Clark, R. N. et al. Detection and mapping of hydrocarbon deposits on Titan. J. Geophys. Res. Planets 115, E10005 (2010).

    Article  Google Scholar 

  70. 70.

    Singh, S. et al. Acetylene on Titan’s surface. Astrophys. J. 828, 55 (2016).

    Article  Google Scholar 

  71. 71.

    Yelle, R. V., Cui, J. & Muller-Wodarg, I. C. F. Methane escape from Titan’s atmosphere. J. Geophys. Res. Planets 113, E10003 (2008).

    Article  Google Scholar 

  72. 72.

    Nixon, C. A. et al. Isotopic ratios in Titan’s methane: measurements and modeling. Astrophys. J. 749, 159 (2012).

    Article  Google Scholar 

  73. 73.

    Schneider, T., Graves, S. D. B., Schaller, E. L. & Brown, M. E. Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle. Nature 481, 58–61 (2012).

    Article  Google Scholar 

  74. 74.

    Lora, J. M., Lunine, J. I., Russell, J. L. & Hayes, A. G. Simulations of Titan’s paleoclimate. Icarus 243, 264–273 (2014).

    Article  Google Scholar 

  75. 75.

    Lora, J. M. & Mitchell, J. L. Titan’s asymmetric lake distribution mediated by methane transport due to atmospheric eddies. Geophys. Res. Lett. 42, 6213–6220 (2015).

    Article  Google Scholar 

  76. 76.

    Aharonson, O. et al. An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nat. Geosci. 2, 851–854 (2009).

    Article  Google Scholar 

  77. 77.

    Lora, J. M., Lunine, J. I. & Russell, J. L. GCM simulations of Titan’s middle and lower atmosphere and comparison to observations. Icarus 250, 516–528 (2015).

    Article  Google Scholar 

  78. 78.

    Mitchell, J. L., Adamkovics, M., Caballero, R. & Turtle, E. P. Locally enhanced precipitation organized by planetary-scale waves on Titan. Nat. Geosci. 4, 589–592 (2011).

    Article  Google Scholar 

  79. 79.

    Birch, S. P. D., Hayes, A. G., Howard, A. D., Moore, J. & Radebaugh, J. Alluvial fan morphology, distribution, and formation on Titan. Icarus 270, 238–247 (2016).

    Article  Google Scholar 

  80. 80.

    Radebaugh, J. et al. Alluvial and fluvial fans on Saturn's moon Titan reveal processes, materials and regional geology. Geolog. Soc. Specl. Public. https://doi.org/10.1144/sp440.6 (2016).

    Article  Google Scholar 

  81. 81.

    Wall, S. et al. Active shoreline of Ontario Lacus, Titan: a morphological study of the lake and its surroundings. Geophys. Res. Lett. https://doi.org/10.1029/2009GL041821 (2010).

    Article  Google Scholar 

  82. 82.

    Moore, J. M., Howard, A. D. & Morgan, A. M. The landscape of Titan as witness to its climate evolution. J. Geophys. Res. Planets 119, 2060–2077 (2014).

    Article  Google Scholar 

  83. 83.

    Elachi, C. et al. Cassini radar views the surface of Titan. Science 308, 970–974 (2005).

    Article  Google Scholar 

  84. 84.

    Lorenz, R. D. et al. Fluvial channels on Titan: initial Cassini RADAR observations. Planet. Space Sci. 56, 1132–1144 (2008).

    Article  Google Scholar 

  85. 85.

    Burr, D. M. et al. Fluvial network analysis on Titan: evidence for subsurface structures and west-to-east wind flow, southwestern Xanadu. Geophys. Res. Lett. 36, L22203 (2009).

    Article  Google Scholar 

  86. 86.

    Jaumann, R. et al. Fluvial erosion and post-erosional processes on Titan. Icarus 197, 526–538 (2008).

    Article  Google Scholar 

  87. 87.

    Black, B. A., Perron, J. T., Burr, D. M. & Drummond, S. A. Estimating erosional exhumation on Titan from drainage network morphology. J. Geophys. Res. Planets 117, E08006 (2012).

    Google Scholar 

  88. 88.

    Burr, D. M., Drummond, S. A., Cartwright, R., Black, B. A. & Perron, J. T. Morphology of fluvial networks on Titan: evidence for structural control. Icarus 226, 742–759 (2013).

    Article  Google Scholar 

  89. 89.

    Langhans, M. H. et al. Titan’s fluvial valleys: morphology, distribution, and spectral properties. Planet. Space Sci. 60, 34–51 (2012).

    Article  Google Scholar 

  90. 90.

    Soderblom, L. A. et al. Topography and geomorphology of the Huygens landing site on Titan. Planet. Space Sci. 55, 2015–2024 (2007).

    Article  Google Scholar 

  91. 91.

    Perron, J. T. et al. Valley formation and methane precipitation rates on Titan. J. Geophys. Res. Planets 111, E11001 (2006).

    Article  Google Scholar 

  92. 92.

    Poggiali, V. et al. Liquid-filled canyons on Titan. Geophys. Res. Lett. 43, 7887–7894 (2016).

    Article  Google Scholar 

  93. 93.

    Barnes, J. W. et al. Shoreline features of Titan’s Ontario Lacus from Cussini/VIMS observations. Icarus 201, 217–225 (2009).

    Article  Google Scholar 

  94. 94.

    Radebaugh, J. Dunes on Saturn’s moon Titan as revealed by the Cassini Mission. Aeolian Res. 11, 23–41 (2013).

    Article  Google Scholar 

  95. 95.

    Brown, R. H., Griffith, C. A., Lunine, J. I. & Barnes, J. W. Polar Caps on Titan? (European Planetary Science Congress, 2006); http://adsabs.harvard.edu/abs/2006epsc.conf..602B

  96. 96.

    Hayes, A. G. et al. Topographic constraints on the evolution and connectivity of Titan’s Lacustrine Basins. Geophys. Res. Lett. 44, 745–753 (2017).

    Article  Google Scholar 

  97. 97.

    Lorenz, R. D., Niemann, H. B., Harpold, D. N., Way, S. H. & Zarnecki, J. C. Titan’s damp ground: constraints on Titan surface thermal properties from the temperature evolution of the Huygens GCMS inlet. Meteorit. Planet. Sci. 41, 1705–1714 (2006).

    Article  Google Scholar 

  98. 98.

    Horvath, D. G., Andrews-Hanna, J. C., Newman, C. E., Mitchell, K. L. & Stiles, B. W. The influence of subsurface flow on lake formation and north polar lake distribution on Titan. Icarus 277, 103–124 (2016).

    Article  Google Scholar 

  99. 99.

    Birch, S. P. D. et al. Geomorphologic mapping of Titan’s polar terrains: constraining surface processes and landscape evolution. Icarus 282, 214–236 (2017).

    Article  Google Scholar 

  100. 100.

    Beghin, C., Sotin, C. & Hamelin, M. Titan’s native ocean revealed beneath some 45 km of ice by a Schumann-like resonance. CR Geosci. 342, 425–433 (2010).

    Article  Google Scholar 

  101. 101.

    Iess, L. et al. The tides of Titan. Science 337, 457–459 (2012).

    Article  Google Scholar 

  102. 102.

    Mitri, G. et al. Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236, 169–177 (2014).

    Article  Google Scholar 

  103. 103.

    Lewis, J. S. Satellites of outer planets - their physical and chemical nature. Icarus 15, 174–185 (1971).

    Article  Google Scholar 

  104. 104.

    Lunine, J. I. & Stevenson, D. J. Clathrate and ammonia hydrates at high-pressure - application to the origin of methane on Titan. Icarus 70, 61–77 (1987).

    Article  Google Scholar 

  105. 105.

    Osegovic, J. P. & Max, M. D. Compound clathrate hydrate on Titan’s surface. J. Geophys. Res. Planets 110, E08004 (2005).

    Article  Google Scholar 

  106. 106.

    Loveday, J. S. et al. Stable methane hydrate above 2 GPa and the source of Titan’s atmospheric methane. Nature 410, 661–663 (2001).

    Article  Google Scholar 

  107. 107.

    Durham, W. B., Kirby, S. H., Stern, L. A. & Zhang, W. The strength and rheology of methane clathrate hydrate. J. Geophys. Res. Solid Earth 108, 2182 (2003).

    Google Scholar 

  108. 108.

    Choukroun, M., Grasset, O., Tobie, G. & Sotin, C. Stability of methane clathrate hydrates under pressure: influence on outgassing processes of methane on Titan. Icarus 205, 581–593 (2010).

    Article  Google Scholar 

  109. 109.

    Tobie, G., Lunine, J. I. & Sotin, C. Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440, 61–64 (2006).

    Article  Google Scholar 

  110. 110.

    Choukroun, M. & Sotin, C. Is Titan’s shape caused by its meteorology and carbon cycle? Geophys. Res. Lett. 39, L04201 (2012).

    Article  Google Scholar 

  111. 111.

    Turtle, E. P. et al. Seasonal changes in Titan's meteorology. Geophys. Res. Lett. 38, L03203 (2011).

  112. 112.

    MacKenzie, S. M. et al. Evidence of Titan's climate history from evaporite distribution. Icarus 243, 191–207 (2014).

  113. 113.

    Hörst, S. M. Titan's atmosphere and climate. J. Geophys. Res. Planets 122, 432–482 (2017).

  114. 114.

    Hueso, R. & Sanchez-Lavega, A. Methane storms on Saturn’s moon Titan. Nature 442, 428–431 (2006).

    Article  Google Scholar 

  115. 115.

    Barth, E. L. & Rafkin, S. C. R. TRAMS: a new dynamic cloud model for Titan’s methane clouds. Geophys. Res. Lett. 34, L03203 (2007).

    Article  Google Scholar 

  116. 116.

    Lorenz, R. D. The life, death and afterlife of a raindrop on Titan. Planet. Space Sci. 41, 647–655 (1993).

    Article  Google Scholar 

  117. 117.

    Graves, S. D. B., Mckay, C. P., Griffith, C. A., Ferri, F. & Fulchignoni, M. Rain and hail can reach the surface of Titan. Planet. Space Sci. 56, 346–357 (2008).

    Article  Google Scholar 

  118. 118.

    Awal, M. & Lunine, J. I. Moist convective clouds in Titan's atmosphere. Geophys. Geophys. Res. Lett. 21, 2491–2494 (1994).

    Article  Google Scholar 

  119. 119.

    Lellouch, E. et al. The distribution of methane in Titan’s stratosphere from Cassini/CIRS observations. Icarus 231, 323–337 (2014).

    Article  Google Scholar 

  120. 120.

    Faulk, S. P., Mitchell, J. L., Moon, S. & Lora, J. M. Regional patterns of extreme precipitation on Titan consistent with observed alluvial fan distribution. Nat. Geosci. 10, 827–831 (2017).

    Article  Google Scholar 

  121. 121.

    Lorenz, R. D. Titan is to Earth’s Hydrological Cycle what Venus is to its Greenhouse Effect Abstract no. 8053 (Comparative Climatology of Terrestrial Planets, 2012).

  122. 122.

    Solomonidou, A. et al. Temporal variations of Titan’s surface with Cassini/VIMS. Icarus 270, 85–99 (2016).

    Article  Google Scholar 

  123. 123.

    Ward, W. R. & Hamilton, D. P. Tilting Saturn. I. Analytic model. Astron. J. 128, 2501–2509 (2004).

    Article  Google Scholar 

  124. 124.

    Hersant, F., Gautier, D., Tobie, G. & Lunine, J. I. Interpretation of the carbon abundance in Saturn measured by Cassini. Planet. Space Sci. 56, 1103–1111 (2008).

    Article  Google Scholar 

  125. 125.

    Atreya, S. K. et al. Titan’s methane cycle. Planet. Space Sci. 54, 1177–1187 (2006).

    Article  Google Scholar 

  126. 126.

    Mousis, O., Choukroun, M., Lunine, J. I. & Sotin, C. Equilibrium composition between liquid and clathrate reservoirs on Titan. Icarus 239, 39–45 (2014).

    Article  Google Scholar 

  127. 127.

    Charnay, B., Forget, F., Tobie, G., Sotin, C. & Wordsworth, R. Titan’s past and future: 3D modeling of a pure nitrogen atmosphere and geological implications. Icarus 241, 269–279 (2014).

    Article  Google Scholar 

  128. 128.

    Pierrehumbert, R. T. The hydrologic cycle in deep-time climate problems. Nature 419, 191–198 (2002).

    Article  Google Scholar 

  129. 129.

    Tobie, G. et al. Evolution of Titan and implications for its hydrocarbon cycle. Philos. Trans. R. Soc. A 367, 617–631 (2009).

    Article  Google Scholar 

  130. 130.

    Burr, D. M. et al. Fluvial features on Titan: insights from morphology and modeling. Geol. Soc. Am. Bull. 125, 299–321 (2013).

    Article  Google Scholar 

  131. 131.

    Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    Article  Google Scholar 

  132. 132.

    Lunine, J. I., Lorenz, R. D. & Hartmann, W. K. Some speculations on Titan’s past, present and future. Planet. Space Sci. 46, 1099–1107 (1998).

    Article  Google Scholar 

  133. 133.

    Kuiper, G. P. Titan: a satellite with an atmosphere. Astrophys. J. 100, 378–383 (1944).

    Article  Google Scholar 

  134. 134.

    Kasting, J. F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

A.G.H. acknowledges the support of NASA Cassini Data Analysis Program grant NNX15AH10G and NASA Early Career Fellowship grant NNX14AJ57G. R.D.L. acknowledges the support of NASA Outer Planets Research grant NNX13AK97G. J.I.L. is forever thankful to the Cassini Project for long-term fiscal ministrations. We also thank J. M. Lora for helpful insights and discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander G. Hayes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayes, A.G., Lorenz, R.D. & Lunine, J.I. A post-Cassini view of Titan’s methane-based hydrologic cycle. Nature Geosci 11, 306–313 (2018). https://doi.org/10.1038/s41561-018-0103-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing