Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands


Woody vegetation in farmland acts as a carbon sink and provides ecosystem services for local people, but no macroscale assessments of the impact of management and climate on woody cover exist for drylands. Here we make use of very high spatial resolution satellite imagery to derive wall-to-wall woody cover patterns in tropical West African drylands. Our study reveals that mean woody cover in farmlands along all semi-arid and sub-humid rainfall zones is 16%, on average only 6% lower than in savannahs. In semi-arid Sahel, farmland management promotes woody cover around villages (11%), while neighbouring savannahs had on average less woody cover. However, farmlands in sub-humid zones have a greatly reduced woody cover (21%) as compared with savannahs (33%). In the region as a whole, rainfall, terrain and soil are the most important (80%) determinants of woody cover, while management factors play a smaller (20%) role. We conclude that agricultural expansion causes a considerable reduction of trees in woodlands, but observations in Sahel indicate that villagers safeguard trees on nearby farmlands which contradicts simplistic ideas of a high negative correlation between population density and woody cover.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: High-resolution woody cover mapping and validation with field data.
Fig. 2: Predicting woody cover.
Fig. 3: Determinants and patterns of woody cover.
Fig. 4: Land management impacts on woody cover.


  1. 1.

    Stebbing, E. P. The encroaching Sahara: the threat to the West African colonies. Geogr. J. 85, 506–519 (1935).

    Article  Google Scholar 

  2. 2.

    Aubréville, A. Climats, Forêts et Désertification de l’Afrique Tropicale (Société d’éditions géographiques, maritimes et coloniales, 1949).

  3. 3.

    Lüdeke, M. K. B., Moldenhauer, O. & Petschel-Held, G. Rural poverty driven soil degradation under climate change: the sensitivity of the disposition towards the Sahel syndrome with respect to climate. Environ. Model. Assess. 4, 315–326 (1999).

    Article  Google Scholar 

  4. 4.

    Ribot, J. C. A history of fear: imagining deforestation in the West African dryland forests. Glob. Ecol. Biogeogr. 8, 291–300 (1999).

    Article  Google Scholar 

  5. 5.

    Mbow, C., Mertz, O., Diouf, A., Rasmussen, K. & Reenberg, A. The history of environmental change and adaptation in eastern Saloum-Senegal-driving forces and perceptions. Glob. Planet. Change 64, 210–221 (2008).

    Article  Google Scholar 

  6. 6.

    Hansfort, S. L. & Mertz, O. Challenging the woodfuel crisis in West African woodlands. Hum. Ecol. 39, 583–595 (2011).

    Article  Google Scholar 

  7. 7.

    Lykke, A. M., Kristensen, M. K. & Ganaba, S. Valuation of local use and dynamics of 56 woody species in the Sahel. Biodivers. Conserv. 13, 1961–1990 (2004).

    Article  Google Scholar 

  8. 8.

    Couteron, P. & Kokou, K. Woody vegetation spatial patterns in a semi-arid savanna of Burkina Faso, West Africa. Plant Ecol. 132, 211–227 (1997).

    Article  Google Scholar 

  9. 9.

    Rasmussen, K., Fog, B. & Madsen, J. E. Desertification in reverse? Observations from northern Burkina Faso. Glob. Environ. Change 11, 271–282 (2001).

    Article  Google Scholar 

  10. 10.

    Tappan, G., Sall, M., Wood, E. & Cushing, M. Ecoregions and land cover trends in Senegal. J. Arid Environ. 59, 427–462 (2004).

    Article  Google Scholar 

  11. 11.

    Reij, C., Tappan, G. & Belemvire, A. Changing land management practices and vegetation on the Central Plateau of Burkina Faso (1968–2002). J. Arid Environ. 63, 642–659 (2005).

    Article  Google Scholar 

  12. 12.

    Mortimore, M. J. & Adams, W. M. Farmer adaptation, change and crisis in the Sahel. Glob. Environ. Change 11, 49–57 (2001).

    Article  Google Scholar 

  13. 13.

    Fairhead, J. & Leach, M. False forest history, complicit social analysis: rethinking some West African environmental narratives. World Dev. 23, 1023–1035 (1995).

    Article  Google Scholar 

  14. 14.

    Gonzalez, P. Desertification and a shift of forest species in the West African Sahel. Clim. Res 17, 217–228 (2001).

    Article  Google Scholar 

  15. 15.

    Rasmussen, K. et al Environmental change in the Sahel: reconciling contrasting evidence and interpretations. Reg. Environ. Change 27, 673–680 (2015).

    Google Scholar 

  16. 16.

    Tucker, C. J. & Nicholson, S. E. Variations in the size of the Sahara Desert from 1980 to 1997. Ambio 28, 587–591 (1999).

    Google Scholar 

  17. 17.

    Olsson, L., Eklundh, L. & Ardo, J. A recent greening of the Sahel-trends, patterns and potential causes. J. Arid Environ. 63, 556–566 (2005).

    Article  Google Scholar 

  18. 18.

    Brandt, M. et al. Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel. Glob. Change Biol. 21, 1610–1620 (2015).

    Article  Google Scholar 

  19. 19.

    Kaptué, A. T., Prihodko, L. & Hanan, N. P. On regreening and degradation in Sahelian watersheds. Proc. Natl Acad. Sci. USA 112, 12133–12138 (2015).

    Article  Google Scholar 

  20. 20.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  Google Scholar 

  21. 21.

    Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 6, 427–448 (2013).

    Article  Google Scholar 

  22. 22.

    Good, S. P. & Caylor, K. K. Climatological determinants of woody cover in Africa. Proc. Natl Acad. Sci. USA 108, 4902–4907 (2011).

    Article  Google Scholar 

  23. 23.

    Browning, D. M. et al. Emerging technological and cultural shifts advancing drylands research and management. Front. Ecol. Environ. 13, 52–60 (2015).

    Article  Google Scholar 

  24. 24.

    Axelsson, C. R. & Hanan, N. P. Patterns in woody vegetation structure across African savannas. Biogeosciences 14, 3239–3252 (2017).

    Article  Google Scholar 

  25. 25.

    Hill, M. J. & Hanan, N. P. Ecosystem Function in Savannas: Measurement and Modeling at Landscape to Global Scales (CRC Press, Boca Raton, 2010).

  26. 26.

    Funk, C. et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

    Article  Google Scholar 

  27. 27.

    Tatem, A. J. WorldPop, open data for spatial demography. Sci. Data 4, 170004 (2017).

    Article  Google Scholar 

  28. 28.

    Hengl, T. et al. Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLoS ONE 10, e0125814 (2015).

    Article  Google Scholar 

  29. 29.

    Lambert, M.-J., Waldner, F. & Defourny, P. Cropland mapping over Sahelian and Sudanian agrosystems: a knowledge-based approach using PROBA-V time series at 100-m. Remote Sens. 8, 232 (2016).

    Article  Google Scholar 

  30. 30.

    Bayala, J., Sanou, J., Teklehaimanot, Z., Kalinganire, A. & Ouédraogo, S. Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Curr. Opin. Environ. Sustain. 6, 28–34 (2014).

    Article  Google Scholar 

  31. 31.

    Mertz, O. et al. Climate factors play a limited role for past adaptation strategies in West Africa. Ecol. Soc. 15, 25 (2010).

    Article  Google Scholar 

  32. 32.

    Bucini, G. & Hanan, N. P. A continental-scale analysis of tree cover in African savannas. Glob. Ecol. Biogeogr. 16, 593–605 (2007).

    Article  Google Scholar 

  33. 33.

    Devine, A. P., McDonald, R. A., Quaife, T. & Maclean, I. M. D. Determinants of woody encroachment and cover in African savannas. Oecologia 183, 939–951 (2017).

    Article  Google Scholar 

  34. 34.

    Kulmatiski, A. & Beard, K. H. Woody plant encroachment facilitated by increased precipitation intensity. Nat. Clim. Change 3, 833–837 (2013).

    Article  Google Scholar 

  35. 35.

    Brandt, M. et al. Human population growth offsets climate driven woody vegetation increase in sub-Saharan Africa. Nat. Ecol. Evol. 1, 0081 (2017).

    Article  Google Scholar 

  36. 36.

    Mertz, O., Lykke, A. & Reenberg, A. Importance and seasonality of vegetable consumption and marketing in Burkina Faso. Econ. Bot. 55, 276–289 (2001).

    Article  Google Scholar 

  37. 37.

    Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).

    Article  Google Scholar 

  38. 38.

    Tiffen, M., Mortimore, M. & Gichuki, F. More People, Less Erosion: Environmental Recovery in Kenya (Wiley, Chichester, 1994).

  39. 39.

    Bucini, G., Saatchi, S., Hanan, N., Boone, R. B. & Smit, I. Woody cover and heterogeneity in the Savannas of the Kruger National Park, South Africa. In 2009 IEEE International Geoscience and Remote Sensing Symp. 4 IV-334–IV-337 (IEEE, 2009).

  40. 40.

    Herrmann, S., Wickhorst, A. & Marsh, S. Estimation of tree cover in an agricultural parkland of Senegal using rule-based regression tree modeling. Remote Sens. 5, 4900–4918 (2013).

    Article  Google Scholar 

  41. 41.

    Roerink, G. J., Menenti, M. & Verhoef, W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. J. Remote Sens. 21, 1911–1917 (2000).

    Article  Google Scholar 

  42. 42.

    Jonsson, P. & Eklundh, L. TIMESAT—a program for analyzing time-series of satellite sensor data. Comput. Geosci. 30, 833–845 (2004).

    Article  Google Scholar 

  43. 43.

    Breman, H. & Kessler, J.-J. Woody Plants in Agro-Ecosystems of Semi-Arid Regions: with an Emphasis on the Sahelian Countries (Springer, Berlin, 1995).

  44. 44.

    Hiernaux, P. et al. Woody plant population dynamics in response to climate changes from 1984 to 2006 in Sahel (Gourma, Mali). J. Hydrol. 375, 103–113 (2009).

    Article  Google Scholar 

  45. 45.

    Hiernaux, P. & Ayantunde, A. The Fakara: a Semi-Arid Agro-Ecosystem Under Stress (ILRI, 2004).

  46. 46.

    Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. & Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 48, 119–126 (1994).

    Article  Google Scholar 

  47. 47.

    Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cyb. SMC-3, 610–621 (1973).

    Article  Google Scholar 

  48. 48.

    Shimada, M. et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 155, 13–31 (2014).

    Article  Google Scholar 

  49. 49.

    Dierckx, W. et al. PROBA-V mission for global vegetation monitoring: standard products and image quality. Int. J. Remote Sens. 35, 2589–2614 (2014).

    Article  Google Scholar 

  50. 50.

    Breiman, L. Arcing the Edge (Statistics Department, University of California, Berkeley, 1997).

    Google Scholar 

  51. 51.

    Brandt, M. et al. Woody plant cover estimation in drylands from Earth Observation based seasonal metrics. Remote Sens. Environ. 172, 28–38 (2016).

    Article  Google Scholar 

  52. 52.

    Chen, J. et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 103, 7–27 (2015).

    Article  Google Scholar 

  53. 53.

    World Database on Protected Areas v.2007 (World Conservation Union and UNEP-World Conservation Monitoring Centre, 2007).

Download references


M.B. received funding from the European Union’s Horizon 2020 Research and Innovation programme under Marie Sklodowska-Curie grant agreement no. 656564. R.F. and M.B. acknowledge funding from the Danish Council for Independent Research (DFF) grant ID: DFF–6111-00258. We thank M.-J. Lambert for providing the farmland mask. We thank the Centre de Suivi Ecologique for providing field data from Senegal. We thank DigitalGlobe for providing commercial satellite data within the NextView license program.

Author information




M.B., R.F., S.H., P.H. and K.R. designed the study. M.B., X.T. and F.T. conducted the analyses with support by L.K., O.M., K.R., R.F., S.H., M.D. and P.H. The data were provided by C.T., J.D., K.M., M.D., L.K., C.V. and P.H.; K.R. and M.B. drafted the manuscript with contributions by all authors.

Corresponding author

Correspondence to Martin Brandt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brandt, M., Rasmussen, K., Hiernaux, P. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nature Geosci 11, 328–333 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing