Article | Published:

Modification of the Western Gondwana craton by plume–lithosphere interaction

Nature Geosciencevolume 11pages203210 (2018) | Download Citation

Abstract

The longevity of cratons is generally attributed to persistence of neutrally-to-positively buoyant and mechanically strong lithosphere that shields the cratonic crust from underlying mantle dynamics. Here we show that large portions of the cratonic lithosphere in South America and Africa, however, experienced significant modification during and since the Mesozoic era, as demonstrated by widespread Cretaceous uplift and volcanism, present-day high topography, thin crust, and the presence of seismically fast but neutrally buoyant upper-mantle anomalies. We suggest that these observations reflect a permanent increase in lithospheric buoyancy due to plume-triggered delamination of deep lithospheric roots during the Late Cretaceous and early Cenozoic periods. Lithosphere in these regions has been thermally reestablished since then, as confirmed by its present-day low heat flow, high seismic velocities and realigned seismic anisotropy. We conclude that the original lowermost cratonic lithosphere is compositionally denser than the asthenospheric mantle and can be removed when perturbed by underlying mantle upwelling. Therefore, it is the buoyancy of the upper lithosphere that perpetuates stabilization of cratons.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 05 June 2018

    In the version of this Article originally published, a thick, white line indicating the mid-lithosphere discontinuity was missing from Fig. 5a. Additionally, in Fig. 5c, where two foundered lithosphere piles are depicted, the colours of the pile on the right were inverted. These errors have now been corrected in all online versions of the Article.

References

  1. 1.

    Jordan, T. H. Composition and development of the continental tectosphere. Nature 274, 544–548 (1978).

  2. 2.

    Durrheim, R. J. & Mooney, W. D. Evolution of the precambrian lithosphere: seismological and geochemical constraints. J. Geophys. Res. 99, 15359–15374 (1994).

  3. 3.

    Carlson, R. W., Pearson, D. G. & James, D. E. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43, RG1001 (2005).

  4. 4.

    Lee, C.-T. A., Luffi, P. & Chin, E. J. Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci. 39, 59–90 (2011).

  5. 5.

    Yuan, H. & Romanowicz, B. Lithospheric layering in the North American craton. Nature 466, 1063–1069 (2010).

  6. 6.

    Yuan, K. & Beghein, C. Seismic anisotropy changes across upper mantle phase transitions. Earth. Planet. Sci. Lett. 374, 132–144 (2013).

  7. 7.

    Debayle, E. & Kennett, B. L. N. The Australian continental upper mantle: structure and deformation inferred from surface waves. J. Geophys. Res. Solid Earth 105, 25423–25450 (2000).

  8. 8.

    King, S. D. Archean cratons and mantle dynamics. Earth Planet. Sci. Lett. 234, 1–14 (2005).

  9. 9.

    Eaton, D. W. & Perry, H. K. C. Ephemeral isopycnicity of cratonic mantle keels. Nat. Geosci. 6, 967–970 (2013).

  10. 10.

    Kaban, M. K., Mooney, W. D. & Petrunin, A. G. Cratonic root beneath North America shifted by basal drag from the convecting mantle. Nat. Geosci. 8, 797–800 (2015).

  11. 11.

    Griffin, W. L., Andi, Z., O’Reilly, S. Y. & Ryan, C. G. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. Mantle Dyn. Plate Interact. East Asia 27, 107–126 (1998).

  12. 12.

    Levander, A et al. Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling. Nature 472, 461–465 (2011).

  13. 13.

    Alkmim, F. F. et al. Kinematic evolution of the Araçuaí–West Congo orogen in Brazil and Africa: nutcracker tectonics during the Neoproterozoic assembly of Gondwana. Precam. Res. 149, 43–64 (2006).

  14. 14.

    Kaban, M. K., Schwintzer, P., Artemieva, I. M. & Mooney, W. D. Density of the continental roots: compositional and thermal contributions. Earth Planet. Sci. Lett. 209, 53–69 (2003).

  15. 15.

    Mooney, W. D. & Kaban, M. K. The North American upper mantle: density, composition, and evolution. J. Geophys. Res. 115, B12424 (2010).

  16. 16.

    Arai, M. Chapadas: relict of mid-Cretaceous interior seas in Brazil. Rev. Bras. Geoci. 30, 436–438 (2000).

  17. 17.

    Catuneanu, O. et al. The Karoo basins of south-central Africa. J. Afr. Earth Sci. 3, 211–253 (2005).

  18. 18.

    Harman, R., Gallagher, K., Brown, R., Raza, A. & Bizzi, L. Accelerated denudation and tectonic/geomorphic reactivation of the cratons of northeastern Brazil during the Late Cretaceous. J. Geophys. Res. 103, 27091–27105 (1998).

  19. 19.

    Hanson, E. K. et al. Cretaceous erosion in central South Africa: Evidence from upper-crustal xenoliths in kimberlite diatremes. South Afr. J. Geol. 112, 125–140 (2009).

  20. 20.

    Cogné, N., Gallagher, K. & Cobbold, P. R. Post-rift reactivation of the onshore margin of southeast Brazil: evidence from apatite (U–Th)/He and fission-track data. Earth Planet. Sci. Lett. 309, 118–130 (2011).

  21. 21.

    Read, G. et al. Stratigraphic relations, kimberlite emplacement and lithospheric thermal evolution, Quiricó Basin, Minas Gerais State, Brazil. Lithos 77, 803–818 (2004).

  22. 22.

    Stanley, J. R., Flowers, R. M. & Bell, D. R. Kimberlite (U–Th)/He dating links surface erosion with lithospheric heating, thinning, and metasomatism in the southern African Plateau. Geology 41, 1243–1246 (2013).

  23. 23.

    Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust. Geophys. Res. Abstr. 15, EGU2013–2658 (2013).

  24. 24.

    Reid, A. B., Ebbing, J. & Webb, S. J. Comment on ‘A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution’ by Getachew E. Tedla, M. van der Meijde, A. A. Nyblade and F. D. van der Meer. Geophys. J. Int. 189, 1217–1222 (2012).

  25. 25.

    Assumpção, M., Feng, M., Tassara, A. & Julià, J. Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography. Tectonophysics 609, 82–96 (2013).

  26. 26.

    Liu, L., K. Liu and S. Gao. Lithospheric layering beneath southern Africa constrained by S-to-P receiver functions. In AGU Fall General Assembly 2016. abstr. DI51A-2660 (American Geophysical Union, 2016).

  27. 27.

    Globig, J. et al New insights into the crust and lithospheric mantle structure of Africa from elevation, geoid, and thermal analysis. J. Geophys. Res. Solid Earth 121, 5389–5424 (2016).

  28. 28.

    Shephard, G. E., Müller, R. D., Liu, L. & Gurnis, M. Miocene drainage reversal of the Amazon River driven by plate-mantle interaction. Nat. Geosci. 3, 870–875 (2010).

  29. 29.

    Flament, N., Gurnis, M. & Müller, R. D. A review of observations and models of dynamic topography. Lithosphere 5, 189–210 (2012).

  30. 30.

    Moucha, R. & Forte, A. M. Changes in African topography driven by mantle convection. Nat. Geosci. 4, 707–712 (2011).

  31. 31.

    French, S., Lekic, V. & Romanowicz, B. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342, 227–230 (2013).

  32. 32.

    Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

  33. 33.

    Pasyanos, M. E., Masters, T. G., Laske, G. & Ma, Z. LITHO1.0: an updated crust and lithospheric model of the Earth. J. Geophys. Res. 119, 2153–2173 (2014).

  34. 34.

    Priestley, K. & McKenzie, D. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth Planet. Sci. Lett. 381, 78–91 (2013).

  35. 35.

    Adams, A. & Nyblade, A. Shear wave velocity structure of the southern African upper mantle with implications for the uplift of southern Africa. Geophys. J. Int. 186, 808–824 (2011).

  36. 36.

    Feng, M., Assumpção, M. & Van der Lee, S. Group velocity tomography and lithospheric S-velocity structure of the South American continent. Phys. Earth Planet. Inter. 147, 315–331 (2007).

  37. 37.

    Dalton, C. A., Bao, X. & Ma, Z. The thermal structure of cratonic lithosphere from global Rayleigh wave attenuation. Earth Planet. Sci. Lett. 457, 250–262 (2017).

  38. 38.

    Artemieva, I. Global 1 degrees x 1 degrees thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution. Tectonophysics 416, 245–277 (2006).

  39. 39.

    Guillocheau, F. et al. Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: a new method applied to the Namibia–South Africa margin. Basin Res. 24, 3–30 (2012).

  40. 40.

    Griffin, W. L. et al. The origin and evolution of Archean lithospheric mantle. Precambrian Res. 127, 19–41 (2003).

  41. 41.

    Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).

  42. 42.

    Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangaea breakup. Annu. Rev. Earth Planet. Sci. 44, 107–138 (2016).

  43. 43.

    King, S. & Ritsema, J. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons. Science 290, 1137–1140 (2000).

  44. 44.

    Hu, J., Faccenda, M. & Liu, L. Subduction-controlled mantle flow and seismic anisotropy in South America. Earth Planet. Sci. Lett. 470, 13–24 (2017).

  45. 45.

    Schaeffer, A. J., Lebedev, S. & Becker, T. W. Azimuthal seismic anisotropy in the Earth’s upper mantle and the thickness of tectonic plates. Geophys. J. Int. 207, 901–933 (2016).

  46. 46.

    Debayle, E., F. Dubuffet, and S. Durand, An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy. Geophys. Res. Lett. 43, 674–682, (2016).

  47. 47.

    Yaxley, G. M. et al. The discovery of kimberlites in Antarctica extends the vast Gondwanan Cretaceous province. Nat. Commun. 4, 2921 (2013).

  48. 48.

    Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998).

  49. 49.

    Rader, E. et al. Characterization and petrological constraints of the midlithospheric discontinuity. Geochem. Geophys. Geosys. 16, 3484–3504 (2015).

  50. 50.

    Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals-II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

  51. 51.

    Wittlinger, G. & Farra, V. Converted waves reveal a thick and layered tectosphere beneath the Kalahari super-craton. Earth Planet. Sci. Lett. 254, 404–415 (2007).

  52. 52.

    Sodoudi, F. et al. Seismic evidence for stratification in composition and anisotropic fabric within the thick lithosphere of Kalahari Craton. Geochem. Geophys. Geosys. 14, 5393–5412 (2013).

  53. 53.

    Selway, K., Ford, H. & Kelemen, P. The seismic mid-lithosphere discontinuity. Earth Planet. Sci. Lett. 414, 45–57 (2015).

  54. 54.

    Fischer, Karen M., Ford, Heather A., Abt, David L., Rychert, Catherine A. The Lithosphere–Asthenosphere boundary. Ann. Rev. Earth Planet. Sci. 38 551–575, (2010).

  55. 55.

    Chen, L. et al. Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton. Geology 42, 223–226 (2014).

  56. 56.

    Liao, J., Gerya, T. & Wang, Q. Layered structure of the lithospheric mantle changes dynamics of craton extension. Geophys. Res. Lett. 40, 5861–5866 (2013).

  57. 57.

    Jelsma, H., Barnett, W., Richards, S. & Lister, G. Tectonic setting of kimberlites. Lithos 112S, 155–165 (2009).

  58. 58.

    Masters, G., Laske, G., Bolton, H. & Dziewonski, A. in Earth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale (eds Karato, S.-I., Forte, A., Liebermann, R., Masters, G. & Stixrude, L.) 63–87 (American Geophysical Union Monograph, 2000).

  59. 59.

    Ni, S., Tan, E., Gurnis, M. & Helmberger, D. Sharp sides to the African superplume. Science 296, 1850–1852 (2002).

  60. 60.

    McNamara, A. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

  61. 61.

    Steinberger, B. Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface. Phys. Earth Planet. Inter. 164, 2–20 (2007).

  62. 62.

    Conrad, C. P. & Husson, L. Influence of dynamic topography on sea level and its rate of change. Lithosphere 1, 110–120 (2009).

  63. 63.

    Simmons, N. A., Forte, A. M. & Grand, S. P. Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: implications for the relative importance of thermal versus compositional heterogeneity. Geophys. J. Int. 177, 1284–1304 (2009).

  64. 64.

    Bonvalot, S. et al. World Gravity Map: 1:50,000,000 Map (International Gravimetric Bureau, 2012).

  65. 65.

    Kopylova, M. G. & Caro, G. Mantle xenoliths from the southeastern slave craton: evidence for chemical zonation in a thick, cold lithosphere. J. Petrol. 45, 1045–1067 (2004).

  66. 66.

    Griffin, W. L. & O’Reilly, S. Y. in Developments in Precambrian Geology (eds Martin, R. H. S., van Kranendonk, J. & Vickie, C. B.) Ch. 8.2, 1013–1035 (Elsevier, 2007); https://doi.org/10.1016/S0166-2635(07)15082-9

  67. 67.

    Wang, H., J. van Hunen & D. G. Pearson. The thinning of subcontinental lithosphere: the roles of plume impact and metasomatic weakening. Geochem. Geophys. Geosys. 16, 1156–1171 (2015).

Download references

Acknowledgements

We thank T. Jordan, W. Mooney, S. Gao and L. Chen for helpful comments on the manuscript. L.L. acknowledges NSF grants EAR-1345135, 1554554, 1565640 and supercomputing allocation on Blue Waters through ACI-1516586. M.F. acknowledges the grant Progetto di Ateneo FACCPTRAT12 from Università di Padova.

Author information

Affiliations

  1. Department of Geology, University of Illinois at Urbana-Champaign, Champaign, IL, USA

    • Jiashun Hu
    • , Lijun Liu
    • , Quan Zhou
    • , Stephen Marshak
    •  & Craig Lundstrom
  2. Department of Geoscience, University of Padova, Padova, Italy

    • Manuele Faccenda
  3. Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA

    • Karen M. Fischer

Authors

  1. Search for Jiashun Hu in:

  2. Search for Lijun Liu in:

  3. Search for Manuele Faccenda in:

  4. Search for Quan Zhou in:

  5. Search for Karen M. Fischer in:

  6. Search for Stephen Marshak in:

  7. Search for Craig Lundstrom in:

Contributions

J.H. and L.L. conceived the project and performed the analysis. M.F. contributed to anisotropy and mineral physics. Q.Z., K.F., S.M. and C.L. contributed to gravity, seismology, geology and petrology, respectively. All authors participated in manuscript preparation.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Lijun Liu.

Supplementary information

  1. Supplementary Information

    Supplementary figures

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-018-0064-1

Further reading