Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Land radiative management as contributor to regional-scale climate adaptation and mitigation


Greenhouse gas emissions urgently need to be reduced. Even with a step up in mitigation, the goal of limiting global temperature rise to well below 2 °C remains challenging. Consequences of missing these goals are substantial, especially on regional scales. Because progress in the reduction of carbon dioxide emissions has been slow, climate engineering schemes are increasingly being discussed. But global schemes remain controversial and have important shortcomings. A reduction of global mean temperature through global-scale management of solar radiation could lead to strong regional disparities and affect rainfall patterns. On the other hand, active management of land radiative effects on a regional scale represents an alternative option of climate engineering that has been little discussed. Regional land radiative management could help to counteract warming, in particular hot extremes in densely populated and important agricultural regions. Regional land radiative management also raises some ethical issues, and its efficacy would be limited in time and space, depending on crop growing periods and constraints on agricultural management. But through its more regional focus and reliance on tested techniques, regional land radiative management avoids some of the main shortcomings associated with global radiation management. We argue that albedo-related climate benefits of land management should be considered more prominently when assessing regional-scale climate adaptation and mitigation as well as ecosystem services.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Impacts of regionally variable modifications of land surface albedo in agricultural and densely populated areas.
Fig. 2: Analysed effects by regions for Tmean and TXx.


  1. 1.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge University Press, 2013).

  2. 2.

    Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–4832 (2016).

    Article  Google Scholar 

  3. 3.

    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev. 1 (UNFCCC, 2015);

  4. 4.

    Crutzen, P. J. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim. Chang. 77, 211–219 (2006).

    Article  Google Scholar 

  5. 5.

    Kravitz, B. et al. The Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Sci. Lett. 12, 162–167 (2011).

    Article  Google Scholar 

  6. 6.

    MacMartin, D. G., Caldeira, K. & Keith, D. W. Solar geoengineering to limit the rate of temperature change.Philos. Trans. A 372, 0134 (2014).

    Article  Google Scholar 

  7. 7.

    Geoengineering the Climate: Science, Governance and Uncertainty (The Royal Society, 2009);

  8. 8.

    Ricke, K. L., Morgan, M. G. & Allen, M. R. Regional climate response to solar radiation management. Nat. Geosci. 3, 537–541 (2010).

    Article  Google Scholar 

  9. 9.

    Schäfer, S. et al. Field tests of solar climate engineering. Nat. Clim. Chang. 3, 766 (2013).

    Article  Google Scholar 

  10. 10.

    Barrett, S. et al. Climate engineering reconsidered. Nat. Clim. Chang. 4, 527–529 (2014).

    Article  Google Scholar 

  11. 11.

    Sillmann, J. et al. Climate emergencies do not justify geoengineering the climate. Nat. Clim. Chang. 5, 290–292 (2015).

    Article  Google Scholar 

  12. 12.

    IPCC Expert Meeting on Geoengineering (eds Edenhofer, O. et al.) (IPCC, 2012).

  13. 13.

    Robock, A., Marquardt, A., Kravitz, B. & Stenchikov, G. Benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett. 36, L19703 (2009).

    Article  Google Scholar 

  14. 14.

    Ban-Weiss, G. A. & Caldeira, K. Geoengineering as an optimization problem. Environ. Res. Lett. 5, 034009 (2010).

    Article  Google Scholar 

  15. 15.

    Davin, E. L., Seneviratne, S. I., Ciais, P., Olioso, A. & Wang, T. Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci. USA 111, 9757–9761 (2014).

    Article  Google Scholar 

  16. 16.

    Hamwey, R. Active amplification of the terrestrial albedo to mitigate climate change: an exploratory study. Mitig. Adapt. Strategies Glob. Change 12, 419–439 (2007).

    Article  Google Scholar 

  17. 17.

    Singarayer, J. S. & Davies-Barnard, T. Regional climate change mitigation with crops: context and assessment. Philos. Trans. A 370, 4301–4316 (2012).

  18. 18.

    Irvine, P. J., Ridgwell, A. & Lunt, D. J. Climatic effects of surface albedo geoengineering. J. Geophys. Res. 116, D24112 (2011).

    Article  Google Scholar 

  19. 19.

    Akbari, H., Menon, S. & Rosenfeld, A. Global cooling: increasing world-wide urban albedos to offset CO2. Clim. Change 94, 275–286 (2009).

  20. 20.

    Andales, A. A., Batchelor, W. D., Anderson, C. E., Farnham, D. E. & Whigham, D. K. Incorporating tillage effects into a soybean model. Agric. Syst. 66, 69–98 (2000).

    Article  Google Scholar 

  21. 21.

    Wilhelm, M., Davin, E. L. & Seneviratne, S. I. Climate engineering of vegetated land for hot extremes mitigation: an ESM sensitivity study. J. Geophys. Res. 120, 2612–2623 (2015).

    Article  Google Scholar 

  22. 22.

    Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. A. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).

    Google Scholar 

  23. 23.

    Cook, R. J. Toward cropping system that enhance productivity and sustainability. Proc. Natl. Acad. Sci. USA 103, 18389–18394 (2006).

    Article  Google Scholar 

  24. 24.

    Breuer, L., Eckhardt, K. & Frede, H.-G. Plant parameter values for models in temperate climates. Ecol. Model. 169, 237–293 (2003).

    Article  Google Scholar 

  25. 25.

    Hirsch A. L., Wilhelm, M., Davin, E. D., Thiery, W. & Seneviratne, S. I. Can climate-effective land management reduce regional warming? J. Geophys. Res. D026125 (2017).

  26. 26.

    Campra, P., Garcia, M., Canton, Y. & Palacios-Orueta, A. Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain. J. Geophys. Res. 113, D18109 (2008).

    Article  Google Scholar 

  27. 27.

    Gaffin, S. R. et al. Bright is the new black—multi-year performance of high-albedo roofs in a urban climate. Environ. Res. Lett. 7, 014029 (2012).

    Article  Google Scholar 

  28. 28.

    Mackey, C. W., Lee, X. & Smith, R. B. Remotely sensing the cooling effects of city scale efforts to reduce urban heat island. Build. Environ. 49, 348–358 (2012).

    Article  Google Scholar 

  29. 29.

    World Urbanization Prospects: The 2014 Revision ST/ESA/SER.A/366 (UN Department of Economic and Social Affairs, 2015);

  30. 30.

    Matthews, T.K.R, Wilby, R. L. & Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl Acad. Sci. USA 114, 3861–3866 (2017).

  31. 31.

    Oleson, K. W., Bonan, G. B. & Feddema, J. Effects of white roofs on urban temperature in a global climate model. Geophys. Res. Lett. 37, L03701 (2010).

  32. 32.

    Mueller, N. D. et al. Global relationships between cropland intensification and summer temperature extremes over the last 50 years. J. Clim. 30, 7505–7528 (2017).

    Article  Google Scholar 

  33. 33.

    Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).

    Article  Google Scholar 

  34. 34.

    Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model. Dev. 9, 2973–2998 (2016).

    Article  Google Scholar 

  35. 35.

    Sagan, C., Toon, O. B. & Pollack, J. B. Anthropogenic albedo changes and the Earth’s climate. Science 206, 1363–1368 (1979).

    Article  Google Scholar 

  36. 36.

    Boisier, J.-P. et al. Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations. J. Geophys. Res. 117, D12116 (2012).

    Article  Google Scholar 

  37. 37.

    Pielke, R. A. Sr et al. Land use/land cover changes and climate: modeling analysis and observational evidence. WIREs Clim. Chang. 2, 828–850 (2011).

    Article  Google Scholar 

  38. 38.

    Brovkin, V. et al. Effect of anthropogenic land-use and land-cover changes on climate and carbon storage in CMIP5 projections for the twenty-first century. J. Clim. 26, 6859–6881 (2013).

    Article  Google Scholar 

  39. 39.

    Davin, E. L. & de Noblet-Ducoudré, N. Climatic impact of global-scale deforestation: radiative versus non-radiative processes. J. Clim. 23, 97–112 (2010).

  40. 40.

    Kravitz, B. et al. An overview of the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 118, 8320–8332 (2013).

    Article  Google Scholar 

  41. 41.

    Lenton, T. M. & Vaughan, N. E. The radiative forcing potential of different climate geoengineering options. Atmos. Chem. Phys. 9, 5539–5561 (2009).

    Article  Google Scholar 

  42. 42.

    Singarayer, J. S., Ridgwell, A. & Irvine, P. Assessing the benefits of crop albedo bio-geoengineering. Environ. Res. Lett. 4, 045110 (2009).

    Article  Google Scholar 

  43. 43.

    Lobell, D., Bala, G. & Duffy, P. Biogeophysical impacts of cropland management changes on climate. Geophys. Res. Lett. 33, L06708 (2006).

    Google Scholar 

  44. 44.

    Ridgwell, A., Singarayer, J. S., Hetherington, A. M. & Valdes, P. J. Tackling regional climate change by leaf albedo bio-geoengineering. Curr. Biol. 19, 146–150 (2009).

    Article  Google Scholar 

  45. 45.

    Crook, J. A., Jackson, L. S., Osprey, S. M. & Forster, P. M. A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes. J. Geophys. Res. Atmos. 120, 9352–9373 (2015).

    Article  Google Scholar 

  46. 46.

    Keith, D. W. & MacMartin, D. G. A temporary, moderate and responsive scenario for solar geoengineering. Nat. Clim. Chang. 5, 201–206 (2015).

    Article  Google Scholar 

  47. 47.

    Pitman, A. J. et al. Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys. Res. Lett. 36, L14814 (2009).

    Article  Google Scholar 

  48. 48.

    Morton, O. Crops that cool. Nature (15 January 2009);

  49. 49.

    Smith, K. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 709–754 (IPCC, Cambridge Univ. Press, 2014).

  50. 50.

    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Chang. 3, 497–501 (2013).

    Article  Google Scholar 

  51. 51.

    Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 344, 516–519 (2014).

    Article  Google Scholar 

  52. 52.

    Jones, A. et al. The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 118, 9743–9752 (2013).

    Article  Google Scholar 

  53. 53.

    Caldeira, K. & Myhrvold, N. P. Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentrations. Environ. Res. Lett. 8, 034039 (2013).

    Article  Google Scholar 

  54. 54.

    Trisos, C. H., Amatulli, G., Gurevitch, J., Robock, A. & Zambri, B. Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nat. Ecol. Evol. (in press).

  55. 55.

    Field, C. et al. Technical Summary. Climate Change 2014: Impacts, Adaptation and Vulnerability (eds Field, C. et al.) 35–94 (IPCC, Cambridge University Press, 2014).

  56. 56.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article  Google Scholar 

  57. 57.

    Phipps, S. J. et al. The CSIRO Mk3L climate system model version 1.0. Part 1: Description and evaluation. Geosci. Model. Dev. 4, 483–509 (2011).

    Article  Google Scholar 

  58. 58.

    Phipps, S. J. et al. The CSIRO Mk3L climate system model version 1.0. Part 2: Response to external forcings. Geosci. Model. Dev. 5, 649–682 (2012).

    Article  Google Scholar 

  59. 59.

    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  Google Scholar 

  60. 60.

    Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture–temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).

    Article  Google Scholar 

  61. 61.

    Kravitz, B. et al. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results. Geosci. Model. Dev. 8, 3379–3392 (2015).

    Article  Google Scholar 

  62. 62.

    Anderson, G. B. & Bell, M. L. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Persp. 119, 210–218 (2011).

    Article  Google Scholar 

  63. 63.

    Sherwood, S. C. & Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA 107, 9552–9555 (2010).

  64. 64.

    Zander, K. K., Botzen, W. J. W., Oppermann, E., Kjellstrom, T. & Garnett, S. T. Heat stress causes substantial labour productivity loss in Australia. Nat. Clim. Chang. 5, 647–651 (2015).

    Article  Google Scholar 

  65. 65.

    Impacts and Adaptation Response of Infrastructure and Communities to Heatwaves: The Southern Australian Experience of 2009 (National Climate Change Adaption Research Facility, Queensland Univ. Technology, 2010).

  66. 66.

    Doughty, C. E., Field, C. B. & McMillan, A. M. S. Can crop albedo be increased through the modification of leaf trichomes and could this cool regional climate? Clim. Chang. 104, 379–387 (2011).

    Article  Google Scholar 

  67. 67.

    Derpsch, R., Friedrich, T., Kassam, A. & Hongwen, L. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 3, 1–25 (2010).

    Google Scholar 

  68. 68.

    Friedrich, T., Derpsch, R. & Kassam, A. Overview of the global spread of conservation agriculture. Field Actions Sci. Rep. (2012).

  69. 69.

    Turmel, M.-S., Speratti, A., Baudron, F., Verhulst, N. & Govaerts, B. G. Crop residue management and soil health: a systems analysis. Agric. Syst. 134, 6–16 (2015).

  70. 70.

    Powlson, D. S. et al. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Chang. 4, 678–683 (2014).

    Article  Google Scholar 

  71. 71.

    Neufeldt, H., Kissinger, G. & Alcamo, J. No-till agriculture and climate change mitigation. Nat. Clim. Chang. 5, 488–489 (2015).

    Article  Google Scholar 

  72. 72.

    Abdalla, M. et al. Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil. Use Manag. 29, 199–209 (2013).

    Article  Google Scholar 

  73. 73.

    Jeong, S. J. et al. Effects of double cropping on summer climate of the North China Plain and neighbouring regions. Nat. Clim. Chang. 4, 615–619 (2014).

    Article  Google Scholar 

  74. 74.

    Pittelkow, C. M. et al. Productivity limits and potential of the principles of conservation agriculture. Nature 517, 365–368 (2015).

    Article  Google Scholar 

  75. 75.

    Seifert, C. A. & Lobell, D. B. Response of double cropping suitability to climate change in the United States. Environ. Res. Lett. 10, 024002 (2015).

    Article  Google Scholar 

  76. 76.

    Li, D., Bou-Zeid, E. & Oppenheimer, M. The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ. Res. Lett. 9, 1–16 (2014).

    Google Scholar 

  77. 77.

    Robock, A., Oman, L. & G. L. Stenchikov, G. Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res. 113, D16101 (2008).

    Article  Google Scholar 

  78. 78.

    MacMartin, D. G., Keith, D. W., Kravitz, B. & Caldeira, K. Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing. Nat. Clim. Chang. 3, 365–368 (2012).

    Article  Google Scholar 

  79. 79.

    Tilmes, S. et al. The hydrologic impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. (2013).

  80. 80.

    Boyd, P. W. Ranking geoengineering schemes. Nat. Clim. Chang. 1, 722–724 (2008).

    Google Scholar 

  81. 81.

    Hegerl, G. C. & Solomon, S. Risks of climate engineering. Science 325, 955 (2009).

    Article  Google Scholar 

  82. 82.

    Parson, E. A. & Keith, D. W. End the deadlock on governance of geoengineering research. Science 339, 1278–1279 (2013).

    Article  Google Scholar 

  83. 83.

    Tjiputra, J. F., Grini, A. & Lee, H. Impact of idealized future stratospheric aerosol injection on the large-scale ocean and land carbon cycles. J. Geophys. Res. Biogeosci. 121, 2–27 (2016).

  84. 84.

    Curry, C. L. et al. A multimodel examination of climate extremes in an idealized geoengineering experiment. J. Geophys. Res. 119, 3900–3923 (2014).

    Article  Google Scholar 

  85. 85.

    Rogelj, J., McCollum, D. L., O’Neill, B. C. & Riahi, K. 2020 emissions levels required to limit warming to below 2 °C. Nat. Clim. Chang. 3, 405–412 (2013).

    Article  Google Scholar 

  86. 86.

    IPCC Summary for policymakers in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1–32 (IPCC, Cambridge University Press, 2014).

  87. 87.

    Lehner, F. & Stocker, T. F. From local perception to global perspective. Nat. Clim. Chang. 5, 731–735 (2015).

    Article  Google Scholar 

  88. 88.

    Schleussner, C. F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang. 6, 827–835 (2016).

    Article  Google Scholar 

  89. 89.

    IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (IPCC, Cambridge University Press, 2012).

  90. 90.

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    Article  Google Scholar 

  91. 91.

    Haywood, J. M., Jones, A., Bellouin, N. & Stephenson, D. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Clim. Chang. 3, 660–665 (2013).

    Article  Google Scholar 

  92. 92.

    Edenhofer, O. et al. Technical Summary. In Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 33–107 (IPCC, Cambridge Univ. Press, 2014).

  93. 93.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. (2012).

  94. 94.

    Gridded Population of the World (GPW), v3: Population Density Grid (SEDAC, Center for International Earth Science Information Network, Columbia University, Accessed 30 August 2014);

  95. 95.

    Ramankutty, N. & Foley, J. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1028 (1999).

    Article  Google Scholar 

Download references


The study was initiated during a sabbatical by S.I.S at the ARC Centre of Excellence for Climate System Science and developed in the context of the European Research Council (ERC) ‘DROUGHT-HEAT’ project funded by the European Community’s Seventh Framework Programme (grant agreement FP7-IDEAS-ERC-617518). S.J.P. acknowledges support from the Australian Research Council’s Special Research Initiative for the Antarctic Gateway Partnership (Project ID SR140300001). We acknowledge comments from P. Irvine.

Author information




S.I.S. designed the study together with S.J.P. and A.J.P. S.J.P. performed the climate model experiments with inputs from S.I.S. A.L.H. conducted complementary simulations. S.J.P., M.G.D., S.I.S. and M.H. performed the analyses. S.I.S., E.D. and M.W. compiled Table 1. S.I.S and A.J.P. wrote the first version of the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Sonia I. Seneviratne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussions and figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seneviratne, S.I., Phipps, S.J., Pitman, A.J. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nature Geosci 11, 88–96 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing