Links between sediment consolidation and Cascadia megathrust slip behaviour

  • Nature Geosciencevolume 10pages954959 (2017)
  • doi:10.1038/s41561-017-0007-2
  • Download Citation
Published online:


At sediment-rich subduction zones, megathrust slip behaviour and forearc deformation are tightly linked to the physical properties and in situ stresses within underthrust and accreted sediments. Yet the role of sediment consolidation at the onset of subduction in controlling the downdip evolution and along-strike variation in megathrust fault properties and accretionary wedge structure is poorly known. Here we use controlled-source seismic data combined with ocean drilling data to constrain the sediment consolidation and in situ stress state near the deformation front of the Cascadia subduction zone. Offshore Washington where the megathrust is inferred to be strongly locked, we find over-consolidated sediments near the deformation front that are incorporated into a strong outer wedge, with little sediment subducted. These conditions are favourable for strain accumulation on the megathrust and potential earthquake rupture close to the trench. In contrast, offshore Central Oregon, a thick under-consolidated sediment sequence is subducting, and is probably associated with elevated pore fluid pressures on the megathrust in a region where reduced locking is inferred. Our results suggest that the consolidation state of the sediments near the deformation front is a key factor contributing to megathrust slip behaviour and its along-strike variation, and it may also have a significant role in the deformation style of the accretionary wedge.

  • Subscribe to Nature Geoscience for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Atwater, B. F. Evidence for great Holocene earthquakes along the outer coast of Washington-state. Science 236, 942–944 (1987).

  2. 2.

    Adams, J. Paleoseismicity of the Cascadia subduction zone: Evidence from turbidites off the Oregon-Washington margin. Tectonics 9, 569–583 (1990).

  3. 3.

    Goldfinger, C. et al. Turbidite Event History — Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction Zone US Geological Survey Professional Paper 1661–F (USGS, 2012).

  4. 4.

    Satake, K., Wang, K. & Atwater, B. F. Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. J. Geophys. Res. 108, 2535 (2003).

  5. 5.

    Wang, K., Wells, R., Mazzotti, S., Hyndman, R. D. & Sagiya, T. A revised dislocation model of interseismic deformation of the Cascadia subduction zone. J. Geophys. Res. 108, 2026 (2003).

  6. 6.

    Burgette, R. J., Weldon, R. J. & Schmidt, D. A. Interseismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone. J. Geophys. Res. 114, B01408 (2009).

  7. 7.

    McCaffrey, R., King, R. W., Payne, S. J. & Lancaster, M. Active tectonics of northwestern US inferred from GPS-derived surface velocities. J. Geophys. Res. 118, 709–723 (2013).

  8. 8.

    Schmalzle, G. M., McCaffrey, R. & Creager, K. C. Central Cascadia subduction zone creep. Geochem. Geophys. Geosyst. 15, 1515–1532 (2014).

  9. 9.

    Mackay, M. E., Moore, G. F., Cochrane, G. R., Moore, J. C. & Kulm, L. D. Landward vergence and oblique structural trends in the oregon margin accretionary prism — implications and effect on fluid-flow. Earth Planet. Sci. Lett. 109, 477–491 (1992).

  10. 10.

    MacKay, M. E. Structural variation and landward vergence at the toe of the Oregon accretionary prism. Tectonics 14, 1309–1320 (1995).

  11. 11.

    Adam, J., Klaeschen, D., Kukowski, N. & Flueh, E. Upward delamination of Cascadia Basin sediment infill with landward frontal accretion thrusting caused by rapid glacial age material flux. Tectonics 23, (2004).

  12. 12.

    Booth-Rea, G., Klaeschen, D., Grevemeyer, I. & Reston, T. Heterogeneous deformation in the Cascadia convergent margin and its relation to thermal gradient (Washington, NW USA). Tectonics 27, TC4005 (2008).

  13. 13.

    Gulick, S. P. S., Meltzer, A. M. & Clarke, S. H. Seismic structure of the southern Cascadia subduction zone and accretionary prism north of the Mendocino triple junction. J. Geophys. Res. 103, 27207–27222 (1998).

  14. 14.

    Yuan, T., Spence, G. D. & Hyndman, R. D. Seismic velocities and inferred porosities in the accretionary wedge sediments at the Cascadia margin. J. Geophys. Res. 99, 4413–4427 (1994).

  15. 15.

    Cochrane, G. R., Moore, J. C., Mackay, M. E. & Moore, G. F. Velocity and inferred porosity model of the oregon accretionary prism from multichannel seismic-reflection data — implications on sediment dewatering and overpressure. J. Geophys. Res. 99, 7033–7043 (1994).

  16. 16.

    Cochrane, G. R., Moore, C. J. & Lee, H. J. In Subduction Top to Bottom (eds Bebout, G. E., Scholl, D. W., Kirby, S. H., & Platt, J. P.) 57-64 (American Geophysical Union, Washington, DC, 1996).

  17. 17.

    Carbotte, S. M. et al. Evolution and hydration of the Juan de Fuca crust and uppermost mantle: a plate-scale seismic investigation from ridge to trench. AGU Fall Meeting Abstracts 1, 01 (2012).

  18. 18.

    Han, S. et al. Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: new constraints on the distribution of faulting and evolution of the crust prior to subduction. J. Geophys. Res. 121, 1849–1872 (2016).

  19. 19.

    Saffer, D. M. & Bekins, B. A. An evaluation of factors influencing pore pressure in accretionary complexes: implications for taper angle and wedge mechanics. J. Geophys. Res. 111, B04101 (2006).

  20. 20.

    Saffer, D. M., Underwood, M. B. & McKiernan, A. W. Evaluation of factors controlling smectite transformation and fluid production in subduction zones: Application to the Nankai Trough. Isl. Arc 17, 208–230 (2008).

  21. 21.

    Moore, J. C., Moore, G. F., Cochrane, G. R. & Tobin, H. J. Negative-polarity seismic reflections along faults of the Oregon accretionary prism — indicators of overpressuring. J. Geophys. Res. 100, 12895–12906 (1995).

  22. 22.

    Davis, D., Suppe, J. & Dahlen, F. A. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. 88, 1153–1172 (1983).

  23. 23.

    Saffer, D. M. & Tobin, H. J. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 39, 157–186 (2011).

  24. 24.

    Saffer, D. M. & Wallace, L. M. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nat. Geosci. 8, 594–600 (2015).

  25. 25.

    Wannamaker, P. E. et al. Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity. Geochem. Geophys. Geosyst. 15, 4230–4253 (2014).

  26. 26.

    Scholz, C. H. Earthquakes and friction laws. Nature 391, 37–42 (1998).

  27. 27.

    Kodaira, S. et al. High pore fluid pressure may cause silent slip in the Nankai Trough. Science 304, 1295–1298 (2004).

  28. 28.

    Wallace, L. M. et al. Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand. Geochem. Geophys. Geosyst. 10, Q10006 (2009).

  29. 29.

    Eberhart-Phillips, D., Reyners, M., Chadwick, M. & Chiu, J.-M. Crustal heterogeneity and subduction processes: 3-D Vp, Vp/Vs and Q in the southern North Island, New Zealand. Geophys. J. Int. 162, 270–288 (2005).

  30. 30.

    Heise, W. et al. Changes in electrical resistivity track changes in tectonic plate coupling. Geophys. Res. Lett. 40, 5029–5033 (2013).

  31. 31.

    Dean, S. M. et al. Contrasting decollement and prism properties over the Sumatra 2004–2005 earthquake rupture boundary. Science 329, 207–210 (2010).

  32. 32.

    Gulick, S. P. S. et al. Updip rupture of the 2004 Sumatra earthquake extended by thick indurated sediments. Nat. Geosci. 4, 453–456 (2011).

  33. 33.

    Henstock, T. J., McNeill, L. C. & Tappin, D. R. Seafloor morphology of the Sumatran subduction zone: surface rupture during megathrust earthquakes? Geology 34, 485–488 (2006).

  34. 34.

    Hüpers, A. et al. Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra. Science 356, 841–844 (2017).

  35. 35.

    Pichon, X. L., Henry, P. & Lallemant, S. Accretion and erosion in subduction zones: the role of fluids. Annu. Rev. Earth Planet. Sci. 21, 307–331 (1993).

  36. 36.

    Tréhu, A. M., Blakely, R. J. & Williams, M. C. Subducted seamounts and recent earthquakes beneath the central Cascadia forearc. Geology 40, 103–106 (2012).

  37. 37.

    Goldfinger, C., Kulm, L. D., McNeill, L. C. & Watts, P. Super-scale failure of the southern Oregon Cascadia margin. Pure Appl. Geophys. 157, 1189–1226 (2000).

  38. 38.

    Morgan, J. K. & Bangs, N. L. Recognizing seamount-forearc collisions at accretionary margins: insights from discrete numerical simulations. Geology 45, 635–638 (2017).

  39. 39.

    Bell, R. et al. Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events. Geophys. J. Int. 180, 34–48 (2010).

  40. 40.

    Gutscher, M.-A., Klaeschen, D., Flueh, E. & Malavieille, J. Non-Coulomb wedges, wrong-way thrusting, and natural hazards in Cascadia. Geology 29, 379–382 (2001).

  41. 41.

    Cubas, N., Souloumiac, P. & Singh, S. C. Relationship link between landward vergence in accretionary prisms and tsunami generation. Geology 44, 787–790 (2016).

  42. 42.

    Zhou, J., Zhang, B. & Xu, Q. Effects of lateral friction on the structural evolution of fold-and-thrust belts: insights from sandbox experiments with implications for the origin of landward-vergent thrust wedges in Cascadia. Geol. Soc. Am. Bull. 128, 669–683 (2016).

  43. 43.

    McNeill, L. C. & Henstock, T. J. Forearc structure and morphology along the Sumatra–Andaman subduction zone. Tectonics 33, 112–134 (2014).

  44. 44.

    Ikari, M. J., Saffer, D. M. & Marone, C. Effect of hydration state on the frictional properties of montmorillonite-based fault gouge. J. Geophys. Res. 112, B06423 (2007).

  45. 45.

    Kulm, L. D. & von Huene, R. et al. Initial Reports of the Deep Sea Drilling Project Volume 18 (US Government Printing Office, Washington DC, 1973). 

  46. 46.

    Westbrook, G. K., Carson, B. & Musgrave, R. J. et al. Cascadia margin sites 888–892In Proc. ODP Sci. Res. (Ocean Drilling Program, Texas, 1994); 

  47. 47.

    Davis, E. E. et al. Hydrothermal circulation in the oceanic crust: eastern flank of the Juan de Fuca Ridge: sites 1023–1032. In ODP Sci. Res. Vol. 168 (Ocean Drilling Program, Texas, 1997);

  48. 48.

    Minshull, T. & White, R. Sediment compaction and fluid migration in the Makran accretionary prism. J. Geophys. Res. 94, 7387–7402 (1989).

  49. 49.

    Qin, Y. & Singh, S. C. Detailed seismic velocity of the incoming subducting sediments in the 2004 great Sumatra earthquake rupture zone from full waveform inversion of long offset seismic data. Geophys. Res. Lett. 44, 3090–3099 (2017).

  50. 50.

    Arnulf, A. F. Structure and physical characteristics of the Southern Hikurangi Subduction Zone derived from seismic full waveform imaging. Seismol. Res. Lett. 88, 656 (2017)

  51. 51.

    Christeson, G. L. et al. The Yakutat terrane: dramatic change in crustal thickness across the Transition fault, Alaska. Geology 38, 895–898 (2010).

  52. 52.

    Süss, M. P. & Shaw, J. H. P wave seismic velocity structure derived from sonic logs and industry reflection data in the Los Angeles basin, California. J. Geophys. Res. 108, 2170 (2003).

  53. 53.

    Smith, G., McNeill, L., Henstock, T. J. & Bull, J. The structure and fault activity of the Makran accretionary prism. J. Geophys. Res. 117, B07407 (2012).

  54. 54.

    Underwood, M. B. Strike-parallel variations in clay minerals and fault vergence in the Cascadia subduction zone. Geology 30, 155–158 (2002).

  55. 55.

    Underwood, M. B. et al. Provenance, stratigraphic architecture, and hydrogeologic influence of turbidites on the mid-ocean ridge flank of northwestern Cascadia Basin, Pacific Ocean. J. Sediment. Res. 75, 149–164 (2005).

  56. 56.

    Tobin, H. J. & Saffer, D. M. Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. Geology 37, 679–682 (2009).

  57. 57.

    Skarbek, R. M. & Saffer, D. M. Pore pressure development beneath the decollement at the Nankai subduction zone: implications for plate boundary fault strength and sediment dewatering. J. Geophys. Res. 114, B07401 (2009).

  58. 58.

    Hyndman, R. D., Moore, G. F. & Moran, K. Velocity, porosity, and pore-fluid loss from the Nankai subduction zone accretionary prism. In Proc. ODP Sci. Res. (eds Hill, I. A. et al.) Vol. 131, 211–220 (Ocean Drilling Program, Texas, 1993);

  59. 59.

    Erickson, S. N. & Jarrard, R. D. Velocity-porosity relationships for water-saturated siliciclastic sediments. J. Geophys. Res. 103, 30385–30406 (1998).

  60. 60.

    Hoffman, N. W. & Tobin, H. J. An empirical relationship between velocity and porosity for underthrust sediments in the Nankai Trough accretionary prism. In Proc. ODP Sci. Res. Vol. 190/196 (Ocean Drilling Program, Texas, 2004);

  61. 61.

    Karig, D. E. & Hou, G. High-stress consolidation experiments and their geologic implications. J. Geophys. Res. 97, 289–300 (1992).

  62. 62.

    Wood, D. M. Soil Behaviour and Critical State Soil Mechanics (Cambridge Univ. Press, Cambridge, 1990).

  63. 63.

    Kitajima, H. & Saffer, D. M. Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the Nankai Trough subduction megathrust. Geophys. Res. Lett. 39, L23301 (2012).

Download references


We thank the captain, crew and technical staff of R/V Marcus G. Langseth for their efforts, which made the success of cruise MGL1211 possible. Seismic data processing and interpretation was conducted using the Paradigm processing software packages Echos and Geodepth. We thank A. Arnulf for providing the velocity profile from the Hikurangi margin. This research was supported by the National Science Foundation through a GeoPRISMS Postdoctoral Fellowship (Award 1457221) to S.H. and Award 1029411 to S.M.C.

Author information


  1. Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA

    • Shuoshuo Han
    •  & Nathan L. Bangs
  2. Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA

    • Suzanne M. Carbotte
    •  & James C. Gibson
  3. Department of Geosciences and Center for Geomechanics, Geofluids, and Geohazards, The Pennsylvania State University, University Park, PA, USA

    • Demian M. Saffer


  1. Search for Shuoshuo Han in:

  2. Search for Nathan L. Bangs in:

  3. Search for Suzanne M. Carbotte in:

  4. Search for Demian M. Saffer in:

  5. Search for James C. Gibson in:


S.H. participated in the data collection and processed the seismic data. S.M.C. conceived of the project and led the data collection. S.H., N.L.B. and S.M.C interpreted the seismic data. S.H. and D.M.S. conducted the porosity and effective stress analysis. J.C.G. participated in the data collection and provided the starting models for velocity analysis. S.H. wrote the paper with contributions and edits from all other authors.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Shuoshuo Han.

Electronic supplementary material

  1. Supplementary Information 

    Supplementary data and analyses to support the proposed links between sediment consolidation and Cascadia megathrust slip behaviour