Rediscovery of the doldrums in storm-resolving simulations over the tropical Atlantic


The doldrums — a zone of calm and variable winds in the deep tropics between the trades — were of key importance to nineteenth century maritime travel. As a result, the region was a focus in atmospheric science at that time. However, as sailing ships were replaced by steamboats, scientific interest shifted to the heavy precipitating storms within the doldrums: the deep convective systems of the intertropical convergence zone. Now, in storm-system-resolving simulations over a period of two months that cover a large part of the tropical Atlantic, the doldrums are one of the most prominent features. The doldrums are substantially less pronounced in coarser-resolution simulations that use a parameterization for convection, despite their large-scale extent. We conclude that explicitly representing the storm scale dynamics and their coupling to the surface wind on the storm-system scales helps to maintain the systems of winds that define the doldrums. We suggest that the lack of these wind systems could explain the persistent tropical precipitation biases in climate models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Snap-shot of wind speed at 10 m height in the storm-resolving simulations.
Fig. 2: A composite view of the ITCZ.
Fig. 3: Variability of the wind direction in storm-resolving simulations and a model with parameterized convection.
Fig. 4: Wind directions and calms visualized following Maury42.


  1. 1.

    Halley, E. An historical account of the trade winds, and monsoons, observable in the seas between and near the tropicks, with an attempt to assign the phisical cause of the said wind. Philos. Trans. R. Soc. 183, 153–168 (1686).

    Article  Google Scholar 

  2. 2.

    Oxford English Dictionary (Oxford University Press, Oxford, 2017);

  3. 3.

    Hutcheson, J. C. On Board the “Esmeralda” (Cassell & Company Ltd, London, 1885).

    Google Scholar 

  4. 4.

    Findlay, A. G. A Directory for the North Atlantic Oean, Comprising Instructions, General and Particular, for its Navitation 16th edn (Imray, Laurie, Norie & Wilson Ltd, London, 1918).

    Google Scholar 

  5. 5.

    Xie, S. P. & Philander, S. A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46, 340–350 (1994).

    Article  Google Scholar 

  6. 6.

    Bony, S. et al. Clouds, circulation and climate sensitivity. Nat. Geosci. 8, 261–268 (2015).

    Article  Google Scholar 

  7. 7.

    Maury, M. F. The Physical Geography of the Sea and its Meteorology 11th edn (Sampson Low, Son & Co., 1864).

  8. 8.

    Seewarte, D. Segelhandbücher für den Atlantischen Ozean (Friederichsen und Co., Hamburg, 1885).

  9. 9.

    Brooks, C & Braby, H. W. The clash of the trades in the Pacific. Quart. J. R. Meteorol. Soc. 197, 1–11 (1921).

  10. 10.

    Palmer, C. E. in Compendium of Meteorology (ed. Malone, T. F.) 859–880 (American Meteorological Society, Boston, 1951).

    Google Scholar 

  11. 11.

    Riehl, H. & Malkus, J. S. On the heat balance in the equatorial trough zone. Geophysica 6, 503–538 (1958).

    Google Scholar 

  12. 12.

    Slingo, A. & Slingo, J. M. The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quart. J. R. Meteorol. Soc. 114, 1027–1062 (1988).

    Article  Google Scholar 

  13. 13.

    Randall, D. A., Harshvardhan, Dazlich, D. A. & Corsetti, T. G. Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci. 46, 1943–1970 (1989).

    Article  Google Scholar 

  14. 14.

    Cane, M. A., Zebiak, S. E. & Dolan, S. C. Experimental forecasts of El Niño. Nature 321, 827–832 (1986).

    Article  Google Scholar 

  15. 15.

    Lindzen, R. S. & Nigam, S. On the role of sea surface temperature gradients in forcing low level winds and convergence in the tropics. J. Atmos. Sci. 44, 2418–2436 (1987).

    Article  Google Scholar 

  16. 16.

    Mitchell, T. P. & Wallace, J. M. The annual cycle in equatorial convection and sea surface temperature. J. Clim. 5, 1140–1156 (1992).

    Article  Google Scholar 

  17. 17.

    Xie, S.-P. in The Hadley Circulation: Present, Past and Future (eds Diaz, H. F. & Bradley, R. S.) 121–152 (Springer Netherlands, Dordrecht, 2004).

    Google Scholar 

  18. 18.

    Dunn, G. E. Cyclogenesis in the tropical Atlantic. Bull. Am. Meteorol. Soc. 21, 215–229 (1940).

    Google Scholar 

  19. 19.

    Dunkerton, T. J., Montgomery, M. T. & Wang, Z. Tropical cyclogenesis in a tropical wave critical layer: easterly waves. Atmos. Chem. Phys. 9, 5587–5646 (2009).

    Article  Google Scholar 

  20. 20.

    Weimerskirch, H., Bishop, C., Jeanniard-du Dot, T., Prudor, A. & Sachs, G. Frigate birds track atmospheric conditions over months-long transoceanic flights. Science 353, 74–78 (2016).

    Article  Google Scholar 

  21. 21.

    Richter, I., Xie, S.-P., Behera, S., Doi, T. & Masumoto, Y. Equatorial atlantic variability and its relation to mean state biases in CMIP5. Clim. Dyn. 42, 171–188 (2014).

    Article  Google Scholar 

  22. 22.

    Biasutti, M., Sobel, A. H. & Kushnir, Y. AGCM precipitation biases in the tropical atlantic. J. Clim. 19, 935–958 (2006).

    Article  Google Scholar 

  23. 23.

    Siongco, A. C., Hohenegger, C. & Stevens, B. The atlantic ITCZ bias in CMIP5 models. Clim. Dyn. 45, 1169–1180 (2015).

    Article  Google Scholar 

  24. 24.

    Bryan, G. H., Wyngaard, J. C. & Fritsch, J. M. Resolution requirements for the simulation of deep moist convection. Mon Weather Rev. 131, 2394–2416 (2003).

    Article  Google Scholar 

  25. 25.

    I. Orlanski. A rational subdivision of scales for atmospheric processes. Bull. Am. Meteorol. Soc. 56, 527–530 (1975).

  26. 26.

    Zipser, E. J. Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon Weather Rev. 105, 1568–1589 (1977).

    Article  Google Scholar 

  27. 27.

    Houze, R. A. & Betts, A. K. Convection in GATE. Rev. Geophys. 19, 541–576 (1981).

  28. 28.

    Stevens, B. et al. The Barbados cloud observatory: anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull. Am. Meteorol. Soc. 97, 787–801 (2016).

    Article  Google Scholar 

  29. 29.

    Marsham, J. H. et al. The role of moist convection in the west african monsoon system: insights from continental-scale convection-permitting simulations. Geophys. Res. Lett. 40, 1843–1849 (2013).

    Article  Google Scholar 

  30. 30.

    Arakawa, A. The cumulus parameterization problem: past, present, and future. J. Clim. 17, 2493–2525 (2004).

    Article  Google Scholar 

  31. 31.

    Ferreira, R. N. & Schubert, W. H. Barotropic Aspects of ITCZ Breakdown. J. Atmos. Sci. 54, 261–285 (1997).

    Article  Google Scholar 

  32. 32.

    Nolan, D. S., Tulich, S. N. & Blanco, J. E. ITCZ structure as determined by parameterized versus explicit convection in aquachannel and aquapatch simulations. J. Adv. Model. Earth Syst. 8, 425–452 (2016).

    Article  Google Scholar 

  33. 33.

    Hohenegger, C. & Stevens, B. Coupled radiative convective equilibrium simulations with explicit and parameterized convection. J. Adv. Model. Earth Syst. 8, 1468–1482 (2016).

    Article  Google Scholar 

  34. 34.

    Sawyer, S. A. Memorandum on the Intertropical Front (Meteorological Office, 1952).

    Google Scholar 

  35. 35.

    Richter, I., Xie, S.-P., Wittenberg, A. T. & Masumoto, Y. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation. Clim. Dyn. 38, 985–1001 (2011).

    Article  Google Scholar 

  36. 36.

    Williamson, D. L. Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, Version 3. Tellus A 60, 848–862 (2016).

    Article  Google Scholar 

  37. 37.

    Houze, R. A. Jr Mesoscale convective systems. Rev. Geophys. 42, 86 (2004).

    Article  Google Scholar 

  38. 38.

    Biasutti, M., Sobel, A. H. & Kushnir, Y. AGCM precipitation biases in the tropical Atlantic. J. Clim. 19, 935–958 (2006).

    Article  Google Scholar 

  39. 39.

    Siongco, A. C., Hohenegger, C. & Stevens, B. Sensitivity of the summertime tropical atlantic precipitation distribution to convective parameterization and model resolution in ECHAM6. J. Geophys. Res. Atmos. 122, 2579–2594 (2017).

    Google Scholar 

  40. 40.

    Crowe, P. The trade wind circulation of the world. Trans. Inst. Br. Geogr. 15, 39–56 (1949).

    Article  Google Scholar 

  41. 41.

    Crowe, P. Wind and weather in the equatorial zone. Trans. Inst. Br. Geogr. 17, 23–76 (1951).

    Article  Google Scholar 

  42. 42.

    Maury, M. F. Wind and Current Charts 6th edn (E. C. and J. Biddle, Philadelphia, 1854).

    Google Scholar 

  43. 43.

    Emanuel, K. A. An air–sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J. Atmos. Sci. 43, 585–605 (1986).

    Article  Google Scholar 

  44. 44.

    Klepp, C., Ament, F., Bakan, S., Hirsch, L, & Stevens, B. NARVAL Campaign Report (Max Planck Institute for Meteorology, Hamburg, 2015).

  45. 45.

    Zängl, G., Reinert, D., Rpodas, P. & Baldauf, M. The ICON (icosahedral non-hydrostatic) modelling framework of DWD and MPI-M: description of the non-hydrostatic dynamical core. Quart. J. R. Meteorol. Soc. 141, 563–579 (2015).

    Article  Google Scholar 

  46. 46.

    Dipankar, A. et al.  Large eddy simulation using the general circulation model ICON. J. Adv. Model. Earth Syst. 7, 963–986 (2015).

    Article  Google Scholar 

  47. 47.

    Heinze, R. et al. Large-eddy simulations over Germany using ICON: a comprehensive evaluation. Quart. J.R. Meteorol. Soc. 143, 69–100 (2017).

    Article  Google Scholar 

  48. 48.

    Baldauf, M. et al. Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev. 139, 3887–3905 (2011).

    Article  Google Scholar 

  49. 49.

    Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. & Clough, S. A. Radiative transfer for inhomogeneous atmospheres: Rrtm, a validated correlated-k model for the longwave. J. Geophy. Res. Atmos. 102, 16663–16682 (1997).

    Article  Google Scholar 

  50. 50.

    Stevens, B. et al. Atmospheric component of the MPI-M Earth system model: ECHAM6. J. Adv. Model. Earth Syst. 5, 146–172 (2013).

    Article  Google Scholar 

  51. 51.

    Wodzicki, K. & Rapp, A. Long-term characterization of the pacific ITCZ using TRMM, GPCP, and ERA-Interim. J. Geophy. Res. Atmos. 121, 3153–3170 (2016).

    Google Scholar 

Download references


This research was carried out in the Hans Ertel Center for Weather Research (HErZ). This German research network of universities, research institutions and the German Weather Service (DWD) is funded by the BMVI (Federal Ministry of Transport and Digital Infrastructure). M.B. is partly supported by the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) project funded by the German Ministry for Education and Research (01LK1501B). The simulations were conducted on the super computer system of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the simulation data is stored at the the German Climate Computing Center (DKRZ). The authors are very grateful to the librarians at DWD for their support with the historic literature.

Author information



Corresponding author

Correspondence to Daniel Klocke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klocke, D., Brueck, M., Hohenegger, C. et al. Rediscovery of the doldrums in storm-resolving simulations over the tropical Atlantic. Nature Geosci 10, 891–896 (2017).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing