Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Effects of urban-induced mutations on ecology, evolution and health

Abstract

Increasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time. Our Perspective explores how higher mutation rates in urban environments could impact the fitness, ecology and evolution of populations. Most mutations will be neutral or deleterious, and higher mutation rates associated with elevated pollution in urban populations can increase the risk of cancer in humans and potentially other species. We highlight the potential for urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline in population growth of a wide diversity of organisms. Although beneficial mutations are expected to be rare, we argue that higher mutation rates in urban areas could influence adaptive evolution, especially in organisms with short generation times. Finally, we explore avenues for future research to better understand the effects of urban-induced mutations on the fitness, ecology and evolution of city-dwelling organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global concentrations and composition of mutagenic and carcinogenic pollutants.
Fig. 2: The potential for elevated mutation rates in cities to affect the evolution of a population relative to a fitness optimum.
Fig. 3: Potential biosentinel species for studying urban-associated mutations.

Similar content being viewed by others

References

  1. Fenster, C. B. & Murren, C. J. Commentary: mutation: source of variation in evolutionary ecology. Evol. Ecol. 34, 311–314 (2020).

    Article  Google Scholar 

  2. MacLean, R. C., Torres-Barceló, C. & Moxon, R. Evaluating evolutionary models of stress-induced mutagenesis in bacteria. Nat. Rev. Genet. 14, 221–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Fitzgerald, D. M., Hastings, P. & Rosenberg, S. M. Stress-induced mutagenesis: implications in cancer and drug resistance. Annu. Rev. Cancer Biol. 1, 119–140 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lynch, M. et al. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17, 704–714 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Bergeron, L. A. et al. Evolution of the germline mutation rate across vertebrates. Nature 615, 285–291 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Somers, C. M., McCarry, B. E., Malek, F. & Quinn, J. S. Reduction of particulate air pollution lowers the risk of heritable mutations in mice. Science 304, 1008–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Yauk, C. L. & Quinn, J. S. Multilocus DNA fingerprinting reveals high rate of heritable genetic mutation in herring gulls nesting in an industrialized urban site. Proc. Natl Acad. Sci. USA 93, 12137–12141 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease (World Health Organization, 2016).

  9. Global Assessment of Soil Pollution—Summary for Policy Makers (FAO and UNEP, 2021).

  10. A Snapshot of the World’s Water Quality: Towards a Global Assessment (UNEP, 2016).

  11. Filburn, T., Bullard, S. & Bullard, S. G. Three Mile Island, Chernobyl and Fukushima (Springer, 2016).

  12. Seaton, A., Godden, D., MacNee, W. & Donaldson, K. Particulate air pollution and acute health effects. Lancet 345, 176–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Seyyednejad, S., Niknejad, M. & Koochak, H. A review of some different effects of air pollution on plants. Res. J. Environ. Sci. 5, 302–309 (2011).

    Article  CAS  Google Scholar 

  14. Casey, R., Shaw, A., Massal, L. & Snodgrass, J. Stormwater retention ponds in suburban Maryland, USA. Bull. Environ. Contam. Toxicol. 74, 273–280 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021).

    Article  CAS  Google Scholar 

  16. Claxton, L. D. & Woodall, G. M. Jr A review of the mutagenicity and rodent carcinogenicity of ambient air. Mutat. Res. Rev. Mutat. Res. 636, 36–94 (2007).

    Article  CAS  Google Scholar 

  17. White, P. A. & Claxton, L. D. Mutagens in contaminated soil: a review. Mutat. Res. Rev. Mutat. Res. 567, 227–345 (2004).

    Article  CAS  Google Scholar 

  18. IARC Outdoor Air Pollution IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 109 (WHO Press, 2016).

  19. Marchetti, F., Douglas, G. R. & Yauk, C. L. A return to the origin of the EMGS: rejuvenating the quest for human germ cell mutagens and determining the risk to future generations. Environ. Mol. Mutagen. 61, 42–54 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Bromham, L., Hua, X., Lanfear, R. & Cowman, P. F. Exploring the relationships between mutation rates, life history, genome size, environment, and species richness in flowering plants. Am. Nat. 185, 507–524 (2015).

    Article  PubMed  Google Scholar 

  21. Diamond, S. E. & Martin, R. A. Evolution in cities. Annu. Rev. Ecol. Evol. Syst. 52, 519–540 (2021).

    Article  Google Scholar 

  22. Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, aam8327 (2017).

    Article  Google Scholar 

  23. Szulkin, M., Munshi-South, J. & Charmantier, A. Urban Evolutionary Biology (Oxford Univ. Press, 2020).

  24. Verrelli, B. C. et al. A global horizon scan for urban evolutionary ecology. Trends Ecol. Evol. 37, 1006–1019 (2022).

    Article  PubMed  Google Scholar 

  25. Aronson, M. F. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Knapp, S. et al. Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology 93, S83–S98 (2012).

    Article  Google Scholar 

  27. Rogers, A. M., Yong, R. Q. Y. & Holden, M. H. The house of a thousand species: the untapped potential of comprehensive biodiversity censuses of urban properties. Ecology 105, e4225 (2023).

    Article  PubMed  Google Scholar 

  28. Lambert, M. R. & Donihue, C. M. Urban biodiversity management using evolutionary tools. Nat. Ecol. Evol. 4, 903–910 (2020).

    Article  PubMed  Google Scholar 

  29. Leung, D. Y. Outdoor-indoor air pollution in urban environment: challenges and opportunity. Front. Environ. Sci. 2, 69 (2015).

    Article  Google Scholar 

  30. Towards a Pollution-Free Planet: Background Report (UNEP, 2017).

  31. Baensch-Baltruschat, B., Kocher, B., Stock, F. & Reifferscheid, G. Tyre and road wear particles (TRWP)—a review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 733, 137823 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Nirmalkar, J., Haswani, D., Singh, A., Kumar, S. & Raman, R. S. Concentrations, transport characteristics, and health risks of PM2.5-bound trace elements over a national park in central India. J. Environ. Manage. 293, 112904 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. IARC Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 92 (WHO Press, 2010).

  34. Martínez-Bravo, M. & Martínez-del-Río, J. in Encyclopedia of the UN Sustainable Development Goals: Sustainable Cities and Communities (eds Leal Filho, W. et al.) 905–915 (Springer, 2020).

  35. Nagy, K., Rácz, G., Matsumoto, T., Ádány, R. & Ádám, B. Evaluation of the genotoxicity of the pyrethroid insecticide phenothrin. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 770, 1–5 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Annabi, E., Ben Salem, I. & Abid-Essefi, S. Acetamiprid, a neonicotinoid insecticide, induced cytotoxicity and genotoxicity in PC12 cells. Toxicol. Mech. Methods 29, 580–586 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Agudo, A. et al. Polychlorinated Biphenyls and Polybrominated Biphenyls (WHO Press, 2016).

  38. Chowdhury, J., Mandal, T. K. & Mondal, S. Genotoxic impact of emerging contaminant amoxicillin residue on zebra fish (Danio rerio) embryos. Heliyon 6, E05379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Isidori, M., Lavorgna, M., Nardelli, A., Pascarella, L. & Parrella, A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci. Total Environ. 346, 87–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Metzler, M., Kulling, S. E., Pfeiffer, E. & Jacobs, E. Genotoxicity of estrogens. Z. Lebensm. Unters. Forsch. A 206, 367–373 (1998).

    Article  CAS  Google Scholar 

  41. Tagorti, G. & Kaya, B. Genotoxic effect of microplastics and COVID-19: the hidden threat. Chemosphere 286, 131898 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Roursgaard, M. et al. Genotoxicity of particles from grinded plastic items in Caco-2 and HepG2 cells. Front. Public Health 10, 906430 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yang, H.-H., Lai, S.-O., Hsieh, L.-T., Hsueh, H.-J. & Chi, T.-W. Profiles of PAH emission from steel and iron industries. Chemosphere 48, 1061–1074 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Hajat, A., Hsia, C. & O’Neill, M. S. Socioeconomic disparities and air pollution exposure: a global review. Curr. Environ. Health Rep. 2, 440–450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, K. et al. Inequalities in urban greenness and epigenetic aging: different associations by race and neighborhood socioeconomic status. Sci. Adv. 9, eadf8140 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Iafrate, A. J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, F., Gu, W., Hurles, M. E. & Lupski, J. R. Copy number variation in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 10, 451–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brown, T. A. Genomes, 2nd edn (Wiley-Liss, 2002).

  50. Chu, D. & Wei, L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer 19, 359 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Scacheri, C. A. & Scacheri, P. C. Mutations in the non-coding genome. Curr. Opin. Pediatr. 27, 659–664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Orr, H. A. Somatic mutation favors the evolution of diploidy. Genetics 139, 1441–1447 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Otto, S. P. & Gerstein, A. C. The evolution of haploidy and diploidy. Curr. Biol. 18, R1121–R1124 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Anderson, J. B. et al. Clonal evolution and genome stability in a 2500-year-old fungal individual. Proc. R. Soc. B 285, 20182233 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Burian, A. Does shoot apical meristem function as the germline in safeguarding against excess of mutations? Front. Plant Sci. 12, 707740 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang, Y. & Obbard, D. J. Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis. Evol. Lett. 7, 216–226 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Otto, S. P. The evolutionary enigma of sex. Am. Nat. 174, S1–S14 (2009).

    Article  PubMed  Google Scholar 

  58. Charlesworth, B. The effects of deleterious mutations on evolution at linked sites. Genetics 190, 5–22 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Lanfear, R. Do plants have a segregated germline? PLoS Biol. 16, e2005439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hecht, S. S. Tobacco smoke carcinogens and lung cancer. J. Natl Cancer Inst. 91, 1194–1210 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Foo, J. & Michor, F. Evolution of acquired resistance to anti-cancer therapy. J. Theor. Biol. 355, 10–20 (2014).

    Article  PubMed  Google Scholar 

  63. Godschalk, R. W., Yauk, C. L., van Benthem, J., Douglas, G. R. & Marchetti, F. In utero exposure to genotoxicants leading to genetic mosaicism: an overlooked window of susceptibility in genetic toxicology testing? Environ. Mol. Mutagen. 61, 55–65 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Whitham, T. G. & Slobodchikoff, C. Evolution by individuals, plant–herbivore interactions, and mosaics of genetic variability: the adaptive significance of somatic mutations in plants. Oecologia 49, 287–292 (1981).

    Article  PubMed  Google Scholar 

  65. Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. The central role of DNA damage in the ageing process. Nature 592, 695–703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, C. & Williams, S. M. Human somatic variation: it’s not just for cancer anymore. Curr. Genet. Med. Rep. 1, 212–218 (2013).

    Article  Google Scholar 

  67. Claxton, L. D., de, A., Umbuzeiro, G. & DeMarini, D. M. The Salmonella mutagenicity assay: the stethoscope of genetic toxicology for the 21st century. Environ. Health Perspect. 118, 1515–1522 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Claxton, L. D., Matthews, P. P. & Warren, S. H. The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat. Res. Rev. Mutat. Res. 567, 347–399 (2004).

    Article  CAS  Google Scholar 

  69. Chen, G. & White, P. A. The mutagenic hazards of aquatic sediments: a review. Mutat. Res. Rev. Mutat. Res. 567, 151–225 (2004).

    Article  CAS  Google Scholar 

  70. Olivier, M., Hussain, S. P., Caron de Fromentel, C., Hainaut, P. & Harris, C. C. TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci. Publ. 157, 247–270 (2004).

    Google Scholar 

  71. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferreira, M. I., Domingos, M., Gomes, H. de A., Saldiva, P. H. & De Assuncao, J. V. Evaluation of mutagenic potential of contaminated atmosphere at Ibirapuera Park, São Paulo–SP, Brazil, using the Tradescantia stamen-hair assay. Environ. Pollut. 145, 219–224 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. DeMarini, D. M. et al. Lung tumor KRAS and TP53 mutations in nonsmokers reflect exposure to PAH-rich coal combustion emissions. Cancer Res. 61, 6679–6681 (2001).

    CAS  PubMed  Google Scholar 

  74. Yu, X.-J. et al. Characterization of somatic mutations in air pollution-related lung cancer. eBioMedicine 2, 583–590 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Acito, M., Fatigoni, C., Villarini, M. & Moretti, M. Cytogenetic effects in children exposed to air pollutants: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health 19, 6736 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. León-Mejía, G. et al. Cytotoxic and genotoxic effects in mechanics occupationally exposed to diesel engine exhaust. Ecotoxicol. Environ. Saf. 171, 264–273 (2019).

    Article  PubMed  Google Scholar 

  77. Hansen, Å. M. et al. Urinary 1-hydroxypyrene and mutagenicity in bus drivers and mail carriers exposed to urban air pollution in Denmark. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 557, 7–17 (2004).

    Article  CAS  Google Scholar 

  78. Wong, J. Y. et al. Elevated urinary mutagenicity among those exposed to bituminous coal combustion emissions or diesel engine exhaust. Environ. Mol. Mutagen. 62, 458–470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Principles and Methods for the Risk Assessment of Chemicals in Food Environmental Health Criteria No. 240 (FAO and WHO, 2020).

  80. Eberwine, J., Sul, J.-Y., Bartfai, T. & Kim, J. The promise of single-cell sequencing. Nat. Methods 11, 25–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Kennedy, S. R. et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat. Protoc. 9, 2586–2606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cho, E. et al. Error-corrected duplex sequencing enables direct detection and quantification of mutations in human TK6 cells with strong inter-laboratory consistency. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 889, 503649 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Shendure, J. & Akey, J. M. The origins, determinants, and consequences of human mutations. Science 349, 1478–1483 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Ton, N. D. et al. Whole genome sequencing and mutation rate analysis of trios with paternal dioxin exposure. Hum. Mutat. 39, 1384–1392 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Dubrova, Y. E. et al. Human minisatellite mutation rate after the Chernobyl accident. Nature 380, 683–686 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Kovalchuk, I., Kovalchuk, O., Arkhipov, A. & Hohn, B. Transgenic plants are sensitive bioindicators of nuclear pollution caused by the Chernobyl accident. Nat. Biotechnol. 16, 1054–1059 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Ellegren, H., Lindgren, G., Primmer, C. R. & Møller, A. P. Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389, 593–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Yeager, M. et al. Lack of transgenerational effects of ionizing radiation exposure from the Chernobyl accident. Science 372, 725–729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kessler, M. D. et al. De novo mutations across 1,465 diverse genomes reveal mutational insights and reductions in the Amish founder population. Proc. Natl Acad. Sci. USA 117, 2560–2569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. King, L., De Solla, S., Small, J., Sverko, E. & Quinn, J. Microsatellite DNA mutations in double-crested cormorants (Phalacrocorax auritus) associated with exposure to PAH-containing industrial air pollution. Environ. Sci. Technol. 48, 11637–11645 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Somers, C. M., Yauk, C. L., White, P. A., Parfett, C. L. & Quinn, J. S. Air pollution induces heritable DNA mutations. Proc. Natl Acad. Sci. USA 99, 15904–15907 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ely, D. & Hamilton, B. Trends in Fertility and Mother’s Age at First Birth among Rural and Metropolitan Counties: United States, 2007–2017 NCHS Data Brief No. 323 (National Center for Health Statistics, Centers for Disease Control and Prevention, 2018).

  93. Lerch, M. Fertility decline in urban and rural areas of developing countries. Popul. Dev. Rev. 45, 301–320 (2019).

    Article  Google Scholar 

  94. Goldmann, J. M. et al. Parent-of-origin-specific signatures of de novo mutations. Nat. Genet. 48, 935–939 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Schultz, S. T. & Lynch, M. Mutation and extinction: the role of variable mutational effects, synergistic epistasis, beneficial mutations, and degree of outcrossing. Evolution 51, 1363–1371 (1997).

    Article  PubMed  Google Scholar 

  98. Sprouffske, K., Aguilar-Rodriguez, J., Sniegowski, P. & Wagner, A. High mutation rates limit evolutionary adaptation in Escherichia coli. PLoS Genet. 14, e1007324 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Keightley, P. D. Rates and fitness consequences of new mutations in humans. Genetics 190, 295–304 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Pineda‐Krch, M. & Lehtilä, K. Costs and benefits of genetic heterogeneity within organisms. J. Evol. Biol. 17, 1167–1177 (2004).

    Article  PubMed  Google Scholar 

  101. Doonan, J. H. & Sablowski, R. Walls around tumours—why plants do not develop cancer. Nat. Rev. Cancer 10, 794–802 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Jiang, X. et al. Impacts of mutation effects and population size on mutation rate in asexual populations: a simulation study. BMC Evol. Biol. 10, 298 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sniegowski, P. D., Gerrish, P. J., Johnson, T. & Shaver, A. The evolution of mutation rates: separating causes from consequences. Bioessays 22, 1057–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Wei, W. et al. Rapid evolution of mutation rate and spectrum in response to environmental and population-genetic challenges. Nat. Commun. 13, 4752 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lynch, M. Evolution of the mutation rate. Trends Genet. 26, 345–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Carlson, S. M., Cunningham, C. J. & Westley, P. A. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

    Article  PubMed  Google Scholar 

  107. Metzgar, D. & Wills, C. Evidence for the adaptive evolution of mutation rates. Cell 101, 581–584 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Thompson, K. A., Rieseberg, L. H. & Schluter, D. Speciation and the city. Trends Ecol. Evol. 33, 815–826 (2018).

    Article  PubMed  Google Scholar 

  109. Orr, H. A. & Turelli, M. The evolution of postzygotic isolation: accumulating Dobzhansky–Muller incompatibilities. Evolution 55, 1085–1094 (2001).

    CAS  PubMed  Google Scholar 

  110. Van Drunen, W. E. & Johnson, M. T. J. Polyploidy in urban environments. Trends Ecol. Evol. 37, 507–516 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Guo, H., Chang, Z., Wu, J. & Li, W. Air pollution and lung cancer incidence in China: who are faced with a greater effect? Environ. Int. 132, 105077 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Dey, S. et al. Urban–rural differences in breast cancer incidence in Egypt (1999–2006). Breast 19, 417–423 (2010).

    Article  PubMed  Google Scholar 

  113. Ayuso-Álvarez, A. et al. Association between proximity to industrial chemical installations and cancer mortality in Spain. Environ. Pollut. 260, 113869 (2020).

    Article  PubMed  Google Scholar 

  114. Giraudeau, M., Sepp, T., Ujvari, B., Ewald, P. W. & Thomas, F. Human activities might influence oncogenic processes in wild animal populations. Nat. Ecol. Evol. 2, 1065–1070 (2018).

    Article  PubMed  Google Scholar 

  115. Sepp, T., Ujvari, B., Ewald, P. W., Thomas, F. & Giraudeau, M. Urban environment and cancer in wildlife: available evidence and future research avenues. Proc. R. Soc. B 286, 20182434 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Baines, C. et al. Linking pollution and cancer in aquatic environments: a review. Environ. Int. 149, 106391 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Mulvihill, J. J. Preconception exposure to mutagens: medical and other exposures to radiation and chemicals. J. Community Genet. 3, 205–211 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wang, L. et al. Association of ultra-processed food consumption with colorectal cancer risk among men and women: results from three prospective US cohort studies. BMJ 378, e068921 (2022).

    Article  PubMed Central  Google Scholar 

  119. Gámez, S. et al. Downtown diet: a global meta-analysis of increased urbanization on the diets of vertebrate predators. Proc. R. Soc. B 289, 20212487 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lyons, J., Mastromonaco, G., Edwards, D. B. & Schulte-Hostedde, A. I. Fat and happy in the city: eastern chipmunks in urban environments. Behav. Ecol. 28, 1464–1471 (2017).

    Article  Google Scholar 

  121. Schulte-Hostedde, A. I., Mazal, Z., Jardine, C. M. & Gagnon, J. Enhanced access to anthropogenic food waste is related to hyperglycemia in raccoons (Procyon lotor). Conserv. Physiol. 6, coy026 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kliemann, N. et al. Ultra-processed foods and cancer risk: from global food systems to individual exposures and mechanisms. Br. J. Cancer 127, 14–20 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Winglee, K. et al. Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome 5, 121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Des Roches, S. et al. Socio‐eco‐evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Valentine, C. C. III et al. Direct quantification of in vivo mutagenesis and carcinogenesis using duplex sequencing. Proc. Natl Acad. Sci. USA 117, 33414–33425 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Marchetti, F. et al. Error-corrected next-generation sequencing to advance nonclinical genotoxicity and carcinogenicity testing. Nat. Rev. Drug Discov. 22, 165–166 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Frazer, J. et al. Disease variant prediction with deep generative models of evolutionary data. Nature 599, 91–95 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Salk, J. J. & Kennedy, S. R. Next‐generation genotoxicology: using modern sequencing technologies to assess somatic mutagenesis and cancer risk. Environ. Mol. Mutagen. 61, 135–151 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Du Four, V., Janssen, C., Brits, E. & Van Larebeke, N. Genotoxic and mutagenic activity of environmental air samples from different rural, urban and industrial sites in Flanders, Belgium. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 588, 106–117 (2005).

    Article  Google Scholar 

  131. Ceretti, E. et al. Monitoring of volatile and non-volatile urban air genotoxins using bacteria, human cells and plants. Chemosphere 120, 221–229 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. David, E. & Niculescu, V.-C. Volatile organic compounds (VOCs) as environmental pollutants: occurrence and mitigation using nanomaterials. Int. J. Environ. Res. Public Health 18, 13147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jameson, C. W. in Tumour Site Concordance and Mechanisms of Carcinogenesis (eds Baan, R. A. e al.) Ch. 7 (WHO Press, 2021).

  134. Ravindra, K., Sokhi, R. & Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos. Environ. 42, 2895–2921 (2008).

    Article  CAS  Google Scholar 

  135. Abdel-Shafy, H. I. & Mansour, M. S. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25, 107–123 (2016).

    Article  Google Scholar 

  136. Levy, R. J. Carbon monoxide pollution and neurodevelopment: a public health concern. Neurotoxicol. Teratol. 49, 31–40 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Brook, J. R. et al. Further interpretation of the acute effect of nitrogen dioxide observed in Canadian time-series studies. J. Expo. Sci. Environ. Epidemiol. 17, S36–S44 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, L. et al. Understanding the industrial NOx and SO2 pollutant emissions in China from sector linkage perspective. Sci. Total Environ. 770, 145242 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Meftaul, I. M., Venkateswarlu, K., Dharmarajan, R., Annamalai, P. & Megharaj, M. Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total Environ. 711, 134612 (2020).

    Article  Google Scholar 

  140. Li, Z., Liang, Y., Zhou, J. & Sun, X. Impacts of de-icing salt pollution on urban road greenspace: a case study of Beijing. Front. Environ. Sci. Eng. 8, 747–756 (2014).

    Article  CAS  Google Scholar 

  141. García-Pérez, J., Gómez-Barroso, D., Tamayo-Uria, I. & Ramis, R. Methodological approaches to the study of cancer risk in the vicinity of pollution sources: the experience of a population-based case–control study of childhood cancer. Int. J. Health Geogr. 18, 12 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. García-Pérez, J. et al. Childhood leukemia and residential proximity to industrial and urban sites. Environ. Res. 140, 542–553 (2015).

    Article  PubMed  Google Scholar 

  143. García-Pérez, J. et al. Association between residential proximity to environmental pollution sources and childhood renal tumors. Environ. Res. 147, 405–414 (2016).

    Article  PubMed  Google Scholar 

  144. Chen, X. et al. Long-term exposure to urban air pollution and lung cancer mortality: a 12-year cohort study in Northern China. Sci. Total Environ. 571, 855–861 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Beeson, W. L., Abbey, D. E. & Knutsen, S. F. Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: results from the AHSMOG study. Environ. Health Perspect. 106, 813–823 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Bai, X. et al. Linking urbanization and the environment: conceptual and empirical advances. Annu. Rev. Environ. Resour. 42, 215–240 (2017).

    Article  Google Scholar 

  147. Gogna, P. et al. Estimates of the current and future burden of lung cancer attributable to PM2.5 in Canada. Prev. Med. 122, 91–99 (2019).

    Article  PubMed  Google Scholar 

  148. Nyberg, F. et al. Urban air pollution and lung cancer in Stockholm. Epidemiology 11, 487–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Fei, X. et al. The association between heavy metal soil pollution and stomach cancer: a case study in Hangzhou City, China. Environ. Geochem. Health 40, 2481–2490 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Cheng, I. et al. Association between ambient air pollution and breast cancer risk: the multiethnic cohort study. Int. J. Cancer 146, 699–711 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Ebenstein, A. The consequences of industrialization: evidence from water pollution and digestive cancers in China. Rev. Econ. Stat. 94, 186–201 (2012).

    Article  Google Scholar 

  152. Wei, J. & Zhanqing, L. GlobalHighPM2.5: big data gapless 1km global ground-level PM2.5 dataset over land [Data set]. Zenodo https://zenodo.org/records/10081359 (2022).

  153. Wei, J. et al. First close insight into global daily gapless 1 km PM2.5 pollution, driving factors, and health impact. Nat. Commun. 14, 8349 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Center for International Earth Science Information Network Annual PM2.5 Concentrations for Countries and Urban Areas, 1998–2016 (Columbia Univ., 2021).

  155. Wolf, M. J. et al. Country Trends in Major Air Pollutants, v1 (2003–2018) (Socioeconomic Data and Applications Center, 2022).

  156. Wolf, M. J. et al. New insights for tracking global and local trends in exposure to air pollutants. Environ. Sci. Technol. 56, 3984–3996 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Figueroa, X. F., Lillo, M. A., Gaete, P. S., Riquelme, M. A. & Sáez, J. C. Diffusion of nitric oxide across cell membranes of the vascular wall requires specific connexin-based channels. Neuropharmacology 75, 471–478 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Su, R., Jin, X., Li, H., Huang, L. & Li, Z. The mechanisms of PM2.5 and its main components penetrate into HUVEC cells and effects on cell organelles. Chemosphere 241, 125127 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Yauk, C., Lambert, I., Marchetti, F. & Douglas, G. Adverse Outcome Pathway on Alkylation of DNA in Male Pre-meiotic Germ Cells Leading to Heritable Mutations (OECD, 2016).

  160. Cho, E. et al. AOP report: development of an adverse outcome pathway for oxidative DNA damage leading to mutations and chromosomal aberrations. Environ. Mol. Mutagen. 63, 118–134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lakey, P. S. et al. Chemical exposure–response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci. Rep. 6, 32916 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sasaki, J. C. et al. Application of the adverse outcome pathway framework to genotoxic modes of action. Environ. Mol. Mutagen. 61, 114–134 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Fucic, A. et al. Genomic damage in children accidentally exposed to ionizing radiation: a review of the literature. Mutat. Res. Rev. Mutat. Res. 658, 111–123 (2008).

    Article  CAS  Google Scholar 

  164. Chauhan, V., Sherman, S., Said, Z., Yauk, C. L. & Stainforth, R. A case example of a radiation-relevant adverse outcome pathway to lung cancer. Int. J. Radiat. Biol. 97, 68–84 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Ignatov, A. V., Bondarenko, K. & Makarova, A. Non-bulky lesions in human DNA: the ways of formation, repair, and replication. Acta Nat. 9, 12–26 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The ideas for this Perspective were developed over several workshops and meetings, including the Urban Eco-Evo Research Coordination Network (NSF DEB-184063), the ‘Satellite Workshop on Urban Evolutionary and Ecological “Omics”’ funded by the Society of Molecular Biology and Evolution, and the Center for Biological Data Science at Virginia Commonwealth University. M.T.J.J. was supported by an NSERC Steacie Fellowship, a Canada Research Chair and an NSERC Discovery Grant. C.L.Y. was supported by a Canada Research Chair and, along with F.M., a Burroughs Wellcome Fund Innovations in Regulatory Sciences Award. D.N.A. was supported by a Plant Resilience Institute Fellowship from Michigan State University. E.J.C. was funded by NSF DBI-2109587 and the Living Earth Collaborative at Washington University in St. Louis. M.P.-R. (DEB-2332998) and W.B. (DEB-1754394) received funding from the National Science Foundation. C.G.L. was funded by ANID PIA/BASAL FB0002. J.G. was supported by grant PID2020-115874GB-I00 funded by MCIN/AEI/10.13039/501100011033 and by grant 2021 SGR 00417 funded by Departament de Recerca i Universitats, Generalitat de Catalunya. M.S. was supported by NCN Opus grant 2021/41/B/NZ8/04472.

Author information

Authors and Affiliations

Authors

Contributions

M.T.J.J. conceived and led the project. All authors (M.T.J.J., I.A., F.M., J.M.-S., R.W.N., M.S., B.C.V., C.L.Y., D.N.A., W.B., A.E.C., E.J.C., A.D., J.G., C.G.L., M.O., M.P.-R., D.J.R., M.S.R. and K.M.W.) contributed to brainstorming the ideas covered in the paper, and the original outline was written by the lead team members (F.M., J.M.-S., R.W.N., M.S., B.C.V. and C.L.Y.). I.A., M.T.J.J., F.M., J.M.-S., R.W.N., M.S., B.C.V., K.M.W. and C.L.Y. led the writing of specific sections and/or the preparation of the figures and tables. All remaining authors (D.N.A., W.B., A.E.C., E.J.C., A.D., J.G., C.G.L., M.O., M.P.-R., D.J.R., M.S.R. and K.M.W.) contributed to one or more sections, and all authors (M.T.J.J., I.A., F.M., J.M.-S., R.W.N., M.S., B.C.V., C.L.Y., D.N.A., W.B., A.E.C., E.J.C., A.D., J.G., C.G.L., M.O., M.P.-R., D.J.R., M.S.R. and K.M.W.) edited the final drafts of the paper.

Corresponding author

Correspondence to Marc T. J. Johnson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Matthew Nielsen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, M.T.J., Arif, I., Marchetti, F. et al. Effects of urban-induced mutations on ecology, evolution and health. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02401-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02401-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing